Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung.
Complement-mediated pulmonary edema results from increases in lung capillary hydraulic conductivity (Lp), possibly by receptor-mediated mechanisms. We considered the Lp effects of vitronectin and the vitronectin-containing complement complex SC5b-9, which ligate the integrin alpha v beta 3. Vitronectin, SC5b-9, and SC5b-9-enriched zymosan-activated serum all rapidly increased Lp, as determined by the split-drop technique in single lung capillaries of rat lung. The Lp increases were inhibited by a monospecific (LM609) and a polyclonal (R838) antibody against the alpha v beta 3 integrin but not by an irrelevant monoclonal antibody isotype matched with LM609, by a monoclonal antibody against the alpha v beta 5 integrin, or by preimmune rabbit serum. Vitronectin monomers failed to increase Lp. The tyrosine kinase blockers genistein and methyl 2,5-dihydroxycinnamate caused significant concentration-dependent inhibitions of Lp increases due to vitronectin and zymosan-activated serum. By contrast, the protein kinase C blocker calphostin C had no major effect. We conclude that (1) multivalent ligation of the luminally located alpha v beta 3 integrin of lung capillary endothelium increases transcapillary liquid flux, and (2) the dominant signal transduction pathway for this effect occurs through tyrosine kinase activation.[1]References
- Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung. Tsukada, H., Ying, X., Fu, C., Ishikawa, S., McKeown-Longo, P., Albelda, S., Bhattacharya, S., Bray, B.A., Bhattacharya, J. Circ. Res. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg