The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells.
The iron-responsive element-binding protein (IRE-BP) modulates both ferritin mRNA translation and transferrin receptor (TfR) mRNA stability by binding to specific mRNA sequences called iron-responsive elements (IREs). The regulation of IRE-BP in situ could possibly occur either through its Fe-S cluster and/or via free cysteine sulphydryl groups such as cysteine 437 (Philpott et al, J Biol Chem 268:17655, 1993; and Hirling et al, EMBO J 13:453, 1994). Recently, nitrogen monoxide (NO) has been shown to have markedly different biologic effects depending on its redox state (Lipton et al, Nature 364:626, 1993). Considering this fact, it is conceivable that the NO group, as either the nitrosonium ion (NO+) or nitric oxide (NO+), may regulate IRE-BP activity by S-nitrosylation of key sulphydryl groups or via ligation of NO. to the Fe-S cluster, respectively. This hypothesis has been examined using the NO+ generator, sodium nitroprusside (SNP); the NO. generator, S-nitroso-N-acetylpenicillamine (SNAP); and the NO./peroxynitrite (ONOO-) generator, 3-morpholinosydnonimine hydrochloride (SIN-1). Treatment of K562 cells for 18 hours with SNP (1 mmol/L) resulted in a pronounced decrease in both the RNA-binding activity of IRE-BP and the level of TfR mRNA. In addition, Scatchard analysis showed a marked decrease in the number of specific Tf-binding sites, from 590,000/cell (control) to 170,000/cell (test), and there was also a distinct decrease in Fe uptake. Furthermore, SNP did not decrease cellular viability or proliferation. In contrast, the NO. generator, SNAP (1 mmol/L), increased RNA-binding activity of IRE-BP, the level of TfR mRNA, and the number of TfRs in K562 cells. Moreover, both SNAP (1 mmol/L) and SIN-1 (0.5 mmol/L) reduced cellular proliferation. The results are discussed in context of the possible physiologic role of redox-related species of NO in regulating iron metabolism.[1]References
- The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells. Richardson, D.R., Neumannova, V., Nagy, E., Ponka, P. Blood (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg