The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp.

A total of 22 strains of Treponema spp. including members of all four named human oral species were tested for coaggregation with 7 strains of oral fusobacteria, 2 strains of nonoral fusobacteria, and 45 strains of other oral bacteria, which included actinobacilli, actinomyces, capnocytophagae, eubacteria, porphyromonads, prevotellae, selenomonads, streptococci, and veillonellae. None of the treponemes coaggregated with any of the latter 45 oral strains or with the two nonoral fusobacteria. All treponemes, eight Treponema denticola strains, eight T. socranskii strains, four oral pectinolytic treponemes, one T. pectinovorum strain, and one T. vincentii strain coaggregated with at least one strain of the fusobacteria tested as partners. The partners consisted of one strain of Fusobacterium periodonticum, five F. nucleatum strains including all four subspecies of F. nucleatum, and a strain of F. simiae obtained from the dental plaque of a monkey. In the more than 100 coaggregations observed, the fusobacterial partner was heat inactivated (85 degrees C for 30 min), while the treponemes were unaffected by the heat treatment. Furthermore, the fusobacteria were usually inactivated by proteinase K treatment, and the treponemes were not affected. Only the T. denticola coaggregations were inhibited by lactose and D-galactosamine. None were inhibited by any of 23 other different sugars or L-arginine. Intragenic coaggregations were seen among the subspecies of F. nucleatum and with F. periodonticum, and none were inhibited by any of the sugars tested or by L-arginine. No intrageneric coaggregations were observed among the treponemes. These data indicate that the human oral treponemes show a specificity for oral fusobacteria as coaggregation partners. Such cell-to cell contact may facilitate efficient metabolic communication and enhance the proliferation of each cell in the progressively more severe stages of periodontal disease.[1]

References

  1. Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Kolenbrander, P.E., Parrish, K.D., Andersen, R.N., Greenberg, E.P. Infect. Immun. (1995) [Pubmed]
 
WikiGenes - Universities