The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Actinomyces


High impact information on Actinomyces

  • Geldanamycin (GA) is an antibiotic produced by Actinomyces, which specifically inhibits the function of the heat shock protein 90 family [6].
  • Organophosphorous agents (DFP and PMSF), chloromethyl-ketone derivatives of tosylamino acids (TLCK and TPCK), Actinomyces products (pepstatin and chymostatin), and the synthetic protease substrate TAME inhibited monocyte-mediated cytotoxicity against ActD-treated WEHI 164 cells [7].
  • Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct [8].
  • Daptomycin was two- to fourfold less active against Actinomyces spp. than vancomycin, quinupristin-dalfopristin, or linezolid [9].
  • Roles of fructosyltransferase and levanase-sucrase of Actinomyces naeslundii in fructan and sucrose metabolism [10].

Chemical compound and disease context of Actinomyces

  • Influence of physicochemical parameters on adsorption of Actinomyces viscosus to hydroxyapatite surfaces [11].
  • The occurrence of these polysaccharides on 19 additional viridans group streptococcal strains that participate in lactose-sensitive coaggregations with actinomyces was examined [12].
  • Characterization of a galactose-specific lectin from Actinomyces viscosus by a model aggregation system [13].
  • The Actinomyces formed more volatile acids than the streptococci, mostly acetic, and S. sanguis formed more soluble extracellular polysaccharide than the other bacteria [14].
  • Type 1- actinomyces exhibited feeble adsorption to latex beads or HA treated with any of the aforementioned proteins [15].

Biological context of Actinomyces


Anatomical context of Actinomyces


Gene context of Actinomyces


Analytical, diagnostic and therapeutic context of Actinomyces


  1. A factor from Actinomyces viscosus T14V that specifically aggregates Streptococcus sanguis H1. Mizuno, J., Cisar, J.O., Vatter, A.E., Fennessey, P.V., McIntire, F.C. Infect. Immun. (1983) [Pubmed]
  2. Glucose uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the presence of human saliva. Germaine, G.R., Tellefson, L.M. Infect. Immun. (1982) [Pubmed]
  3. Immunological study of lactate dehydrogenase from Streptococcus mutans and evidence of common antigenic domains with lactate dehydrogenases from lactic bacteria. Sommer, P., Klein, J.P., Ogier, J.A., Frank, R.M. Infect. Immun. (1986) [Pubmed]
  4. Characterization of monoclonal antibodies to fimbria-associated adhesins of Bacteroides loescheii PK1295. Weiss, E.I., London, J., Kolenbrander, P.E., Andersen, R.N., Fischler, C., Siraganian, R.P. Infect. Immun. (1988) [Pubmed]
  5. Different type 1 fimbrial genes and tropisms of commensal and potentially pathogenic Actinomyces spp. with different salivary acidic proline-rich protein and statherin ligand specificities. Li, T., Khah, M.K., Slavnic, S., Johansson, I., Strömberg, N. Infect. Immun. (2001) [Pubmed]
  6. Geldanamycin treatment ameliorates the response to LPS in murine macrophages by decreasing CD14 surface expression. Vega, V.L., De Maio, A. Mol. Biol. Cell (2003) [Pubmed]
  7. Rapid killing of actinomycin D-treated tumor cells by human monocytes. II. Cytotoxicity is independent of secretion of reactive oxygen intermediates and is suppressed by protease inhibitors. Colotta, F., Bersani, L., Lazzarin, A., Poli, G., Mantovani, A. J. Immunol. (1985) [Pubmed]
  8. Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct. Niemi, L.D., Johansson, I. Infect. Immun. (2004) [Pubmed]
  9. In vitro activities of daptomycin, vancomycin, quinupristin- dalfopristin, linezolid, and five other antimicrobials against 307 gram-positive anaerobic and 31 Corynebacterium clinical isolates. Goldstein, E.J., Citron, D.M., Merriam, C.V., Warren, Y.A., Tyrrell, K.L., Fernandez, H.T. Antimicrob. Agents Chemother. (2003) [Pubmed]
  10. Roles of fructosyltransferase and levanase-sucrase of Actinomyces naeslundii in fructan and sucrose metabolism. Bergeron, L.J., Burne, R.A. Infect. Immun. (2001) [Pubmed]
  11. Influence of physicochemical parameters on adsorption of Actinomyces viscosus to hydroxyapatite surfaces. Wheeler, T.T., Clark, W.B., Lane, M.D., Grow, T.E. Infect. Immun. (1983) [Pubmed]
  12. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins. Cisar, J.O., Sandberg, A.L., Reddy, G.P., Abeygunawardana, C., Bush, C.A. Infect. Immun. (1997) [Pubmed]
  13. Characterization of a galactose-specific lectin from Actinomyces viscosus by a model aggregation system. Heeb, M.J., Costello, A.H., Gabriel, O. Infect. Immun. (1982) [Pubmed]
  14. Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques. Minah, G.E., Loesche, W.J. Infect. Immun. (1977) [Pubmed]
  15. Pellicle receptors for Actinomyces viscosus type 1 fimbriae in vitro. Clark, W.B., Beem, J.E., Nesbitt, W.E., Cisar, J.O., Tseng, C.C., Levine, M.J. Infect. Immun. (1989) [Pubmed]
  16. Possible release of an ArgGlyArgProGln pentapeptide with innate immunity properties from acidic proline-rich proteins by proteolytic activity in commensal streptococcus and actinomyces species. Li, T., Bratt, P., Jonsson, A.P., Ryberg, M., Johansson, I., Griffiths, W.J., Bergman, T., Strömberg, N. Infect. Immun. (2000) [Pubmed]
  17. Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. Yeung, M.K., Cisar, J.O. J. Bacteriol. (1990) [Pubmed]
  18. Streptococci and actinomyces inhibit regrowth of Streptococcus mutans on gnotobiotic rat molar teeth after chlorhexidine varnish treatment. van der Hoeven, J.S., Schaeken, M.J. Caries Res. (1995) [Pubmed]
  19. Kinetics of lactose-reversible coadhesion of Actinomyces naeslundii WVU 398A and Streptococcus oralis 34 on the surface of hexadecane droplets. Ellen, R.P., Veisman, H., Buivids, I.A., Rosenberg, M. Oral Microbiol. Immunol. (1994) [Pubmed]
  20. The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of actinomyces viscosus. Goldschmidt, M.C., Masin, W.J., Brown, L.R., Wyde, P.R. International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition. (1988) [Pubmed]
  21. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells. Brennan, M.J., Cisar, J.O., Vatter, A.E., Sandberg, A.L. Infect. Immun. (1984) [Pubmed]
  22. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin. Sandberg, A.L., Ruhl, S., Joralmon, R.A., Brennan, M.J., Sutphin, M.J., Cisar, J.O. Infect. Immun. (1995) [Pubmed]
  23. Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystyrene by caseinoglycopeptide derivatives. Neeser, J.R., Chambaz, A., Del Vedovo, S., Prigent, M.J., Guggenheim, B. Infect. Immun. (1988) [Pubmed]
  24. Severe infection due to Actinomyces bernardiae: case report. Ieven, M., Verhoeven, J., Gentens, P., Goossens, H. Clin. Infect. Dis. (1996) [Pubmed]
  25. Molecular evaluation of residual endodontic microorganisms after instrumentation, irrigation and medication with either calcium hydroxide or Septomixine. Tang, G., Samaranayake, L.P., Yip, H.K. Oral diseases. (2004) [Pubmed]
  26. Binding of alpha 2-macroglobulin and haptoglobin to Actinomyces pyogenes. Lämmler, C., Chhatwal, G.S., Blobel, H. Can. J. Microbiol. (1985) [Pubmed]
  27. Methicillin-resistant Staphylococcus aureus and Candida albicans on denture surfaces. Tawara, Y., Honma, K., Naito, Y. Bull. Tokyo Dent. Coll. (1996) [Pubmed]
  28. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. Gibbons, R.J., Hay, D.I. Infect. Immun. (1988) [Pubmed]
  29. Salivary receptors for GalNAc beta-sensitive adherence of Actinomyces spp.: evidence for heterogeneous GalNAc beta and proline-rich protein receptor properties. Strömberg, N., Borén, T., Carlén, A., Olsson, J. Infect. Immun. (1992) [Pubmed]
  30. Binding of colloidal gold-labeled salivary proline-rich proteins to Actinomyces viscosus type 1 fimbriae. Leung, K.P., Nesbitt, W.E., Fischlschweiger, W., Hay, D.I., Clark, W.B. Infect. Immun. (1990) [Pubmed]
  31. Purification and characterization of levanase from Actinomyces viscosus ATCC 19246. Igarashi, T., Takahashi, M., Yamamoto, A., Etoh, Y., Takamori, K. Infect. Immun. (1987) [Pubmed]
  32. Strains of Actinomyces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Li, T., Johansson, I., Hay, D.I., Strömberg, N. Infect. Immun. (1999) [Pubmed]
  33. The effects of different levels of dietary sucrose on root caries subsequent to gingivectomy in conventional rats infected with Actinomyces viscosus M-100. Firestone, A.R., Graves, C.N., Feagin, F.F. J. Dent. Res. (1988) [Pubmed]
  34. Pelvic actinomycosis and the intrauterine contraceptive device. A cyto-histomorphologic study. Luff, R.D., Gupta, P.K., Spence, M.R., Frost, J.K. Am. J. Clin. Pathol. (1978) [Pubmed]
  35. Effect of chlorhexidine varnish on streptococci in dental plaque from occlusal fissures. Schaeken, M.J., van der Hoeven, J.S., van den Kieboom, C.W. Caries Res. (1994) [Pubmed]
WikiGenes - Universities