The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules.

The role of mitogen-activated protein (MAP) kinase in the release of arachidonic acid was examined in a mutated mast cell (RBL-2H3(m1)) line that expressed both native Fc epsilon R1 and the G protein-coupled muscarinic m1 receptor. Stimulation of these cells with Ag, carbachol, Ca(2+)-ionophore, or thapsigargin resulted in the phosphorylation of Raf1, MEK1, p42mapk MAP kinase, and the recently cloned cytosolic phospholipase A2 (PLA2) and increased activities of both MAP kinase and PLA2, as well as release of arachidonic acid. Because this cascade of reactions was inhibited by guanosine 5'-(2-thiodiphosphate), it appeared to be dependent on a GTP-binding protein(s). These reactions, however, were not dependent on protein kinase C; the cascade was totally resistant to the actions of a selective protein kinase C inhibitor, Ro31-7549, whereas release of the secretory granule marker, hexosaminidase, was blocked by this agent. Differences between the stimulatory pathways for release of arachidonic acid and hexosaminidase were evident also from the effects of the kinase inhibitor, quercetin. The above cascade of reactions, including release of arachidonic acid, was inhibited by 50% with approximately 5 microM quercetin, whereas secretion was inhibited only at higher concentrations of inhibitor. Moreover, inhibition of the activation of MAP kinase and release of arachidonic acid were closely correlated. This and previous findings suggested that release of arachidonic acid was attributable to the regulation of cytosolic PLA2 by MAP kinase (for activation of PLA2) and Ca2+ (for association of PLA2 with the membrane), whereas release of hexosaminidase was regulated primarily by Ca2+ and protein kinase C.[1]

References

 
WikiGenes - Universities