The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms.

Effects of the stable somatostatin analogue RC-160 on cell proliferation, tyrosine phosphatase activity, and intracellular calcium concentration were investigated in CHO cells expressing the five somatostatin receptor subtypes SSTR1 to -5. Binding experiments were performed on crude membranes by using [125I-labeled Tyr11] somatostatin-14; RC-160 exhibited moderate-to-high affinities for SSTR2, -3, and -5 (IC50, 0.17, 0.1 and 21 nM, respectively) and low affinity for SSTR1 and -4 (IC50, 200 and 620 nM, respectively). Cell proliferation was induced in CHO cells by 10% (vol/vol) fetal calf serum, 1 microM insulin, or 0.1 microM cholecystokinin (CCK)-8; RC-160 inhibited serum-induced proliferation of CHO cells expressing SSTR2 and SSTR5 (EC50, 53 and 150 pM, respectively) but had no effect on growth of cells expressing SSTR1, -3, or -4. In SSTR2-expressing cells, orthovanadate suppressed the growth inhibitory effect of RC-160. This analogue inhibited insulin-induced proliferation and rapidly stimulated the activity of a tyrosine phosphatase in only this cellular clone. This latter effect was observed at doses of RC-160 (EC50, 4.6 pM) similar to those required to inhibit growth (EC50, 53 pM) and binding to the receptor (IC50, 170 pM), implicating tyrosine phosphatase as a transducer of the growth inhibition signal in SSTR2-expressing cells. In SSTR5-expressing cells, the phosphatase pathway was not involved in the inhibitory effect of RC-160 on cell growth, since this action was not influenced by tyrosine and serine/threonine phosphatase inhibitors. In addition, in SSTR5-expressing cells, RC-160 inhibited CCK-stimulated intracellular calcium mobilization at doses (EC50, 0.35 nM) similar to those necessary to inhibit somatostatin-14 binding (IC50, 21 nM) and CCK-induced cell proliferation (EC50, 1.1 nM). This suggests that the inositol phospholipid/calcium pathway could be involved in the antiproliferative effect of RC-160 mediated by SSTR5 in these cells. RC-160 had no effect on the basal or carbachol-stimulated calcium concentration in cells expressing SSTR1 to -4. Thus, we conclude that SSTR2 and SSTR5 bind RC-160 with high affinity and mediate the RC-160-induced inhibition of cell growth by distinct mechanisms.[1]


  1. Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Buscail, L., Estève, J.P., Saint-Laurent, N., Bertrand, V., Reisine, T., O'Carroll, A.M., Bell, G.I., Schally, A.V., Vaysse, N., Susini, C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
WikiGenes - Universities