The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

[3H]PtdIns hydrolysis in postmortem human brain membranes is mediated by the G-proteins Gq/11 and phospholipase C-beta.

A method utilizing exogenously added [3H]PtdIns incubated with membranes prepared from postmoretem human brain has been shown to provide a means of measuring agonist-induced, guanosine 5'-O-(thiotriphosphate) (GTP[S])-dependent hydrolysis of [3H]PtdIns, thus allowing investigations of the activity of the phosphoinositide second-messenger system in accessible human brain tissue. Agonists inducing [3H]PtdIns hydrolysis include carbachol, trans-1-aminocyclopentyl-1,3-dicarboxylate (ACPD; a glutamatergic metabotropic receptor agonist), serotonin and ATP, with the latter two agonists producing the largest responses. In addition to ATP, [3H]PtdIns hydrolysis was induced by ADP and by 2-methylthio-ATP, indicating that P2-purinergic receptors mediate this process. Subtype-selective antibodies we used to identify Gq/11 and phospholipase C-beta as the G-protein and phospholipase C subtypes that mediated GTP[S]-induced and agonist-induced [3H]PtdIns hydrolysis. These results demonstrate that this method reveals that agonist-induced, GTP[S]-dependent [3H]PtdIns hydrolysis is retained in postmortem human brain membranes with properties similar to rat brain. This method should allow studies of the modulation of phosphoinositide hydrolysis in human brain and investigations of potential alterations in postmortem brain from subjects with neurological and psychiatric diseases.[1]


WikiGenes - Universities