The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In vivo effect of calcitriol on calcium transport and calcium binding proteins in the spontaneously hypertensive rat.

The abnormal intestinal Ca2+ transport reported in spontaneously hypertensive rats (SHR) has been attributed to decreased responsiveness to calcitriol. We reexamined this hypothesis by studying the calcitriol regulation of SHR duodenal calbindin-D9K and calmodulin and the relation of calcitriol to Ca2+ uptake by isolated enterocytes. SHR and normotensive Wistar-Kyoto (WKY) rats were injected with either 50 ng/d calcitriol (vit-D) or vehicle alone (control) for 3 days. Decreased calbindin-D9K (P < .001) and cellular Ca2+ flux (P < .001) were observed in control SHR. Calcitriol increased total cell and brush border calbindin-D9K (P < .0001); this variation paralleled plasma calcitriol levels in both strains. In contrast, Ca2+ flux, which increased in vit-D animals, remained lower in SHR for plasma calcitriol levels similar to those in WKY rats. Immunoreactive calmodulin was similar in both strains whether assayed in total cell or brush border membranes. In contrast, when measured by ligand blotting (45Ca), calmodulin was lower in SHR than in WKY rats (P < .01), suggesting the existence of a calmodulin pool with reduced Ca2+ binding capacity in the hypertensive strain. Calcitriol had no effect on calmodulin in either strain. In conclusion, Ca2+ binding protein regulation by calcitriol is normal in the SHR, and decreased hormone responsiveness cannot account for the defective duodenal calcium transport of this experimental model of hypertension.[1]

References

  1. In vivo effect of calcitriol on calcium transport and calcium binding proteins in the spontaneously hypertensive rat. Roullet, C.M., Roullet, J.B., Martin, A.S., McCarron, D.A. Hypertension (1994) [Pubmed]
 
WikiGenes - Universities