The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium.

Oligomers based on amino acids conserved between known plant omega-3 and cyanobacterium omega-6 fatty acid desaturases were used to screen an Arabidopsis cDNA library for related sequences. An identified clone encoding a novel desaturase-like polypeptide was used to isolate its homologs from Glycine max and Brassica napus. The plant deduced amino acid sequences showed less than 27% similarity to known plant omega-6 and omega-3 desaturases but more than 48% similarity to cyanobacterial omega-6 desaturase, and they contained putative plastid transit sequences. Thus, we deduce that the plant cDNAs encode the plastid omega-6 desaturase. The identity was supported by expression of the B. napus cDNA in cyanobacterium. Synechococcus transformed with a chimeric gene that contains a prokaryotic promoter fused to the rapeseed cDNA encoding all but the first 73 amino acids partially converted its oleic acid fatty acid to linoleic acid, and the 16:1(9c) fatty acid was converted primarily to 16:2(9c, 12) in vivo. Thus, the plant omega-6 desaturase, which utilizes 16:1(7c) in plants, can utilize 16:1(9c) in the cyanobacterium. The plastid and cytosolic homologs of plant omega-6 desaturases are much more distantly related than those of omega-3 desaturases.[1]

References

  1. Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Hitz, W.D., Carlson, T.J., Booth, J.R., Kinney, A.J., Stecca, K.L., Yadav, N.S. Plant Physiol. (1994) [Pubmed]
 
WikiGenes - Universities