The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Brassica

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Brassica

  • To gain further insight into the mode of action of S-locus receptor kinase (SRK), a receptor-like kinase involved in the self-incompatibility response in Brassica, different recombinant SRK proteins have been expressed in a membranous environment using the insect cell/baculovirus system [1].
  • Biochemical studies have suggested that the mechanism of diazaborine inhibition is dependent on NAD(+) and not NADH, and resistance of Brassica napus ENR to diazaborines is thought to be due to the replacement of a glycine in the active site of the E. coli enzyme by an alanine at position 138 in the plant homologue [2].
  • We investigated the mechanism of ligand-independent activation of the estrogen receptor (ER) by 3,3'-diindolylmethane (DIM), a promising anticancer agent derived from vegetables of the Brassica genus, in Ishikawa and HEC-1B human endometrial cancer cells [3].
  • Previous studies have shown that the mitochondrial orf224/atp6 gene region is correlated with the Polima (pol) cytoplasmic male sterility (CMS) of Brassica napus [4].
  • Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth [5].
 

Psychiatry related information on Brassica

 

High impact information on Brassica

  • In Brassica self-incompatibility, recognition between pollen and the stigma is controlled by the S locus, which contains three highly polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also called S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG) [7].
  • Here we show, by transforming self-incompatible plants of Brassica rapa with an SRK28 and an SLG28 transgene separately, that expression of SRK28 alone, but not SLG28 alone, conferred the ability to reject self (S28)-pollen on the transgenic plants [8].
  • Two tightly linked polymorphic genes at the S locus, S receptor kinase gene (SRK) and S locus glycoprotein gene (SLG), are specifically expressed in the papillar cells of the stigma, and analyses of self-compatible lines of Brassica have suggested that together they control stigma function in self-incompatibility interactions [8].
  • Genetic self-incompatibility in Brassica is determined by alleles of the transmembrane serine-threonine kinase SRK, which functions in the stigma epidermis, and of the cysteine-rich peptide SCR, which functions in pollen [9].
  • An aquaporin-like gene required for the Brassica self-incompatibility response [10].
 

Chemical compound and disease context of Brassica

 

Biological context of Brassica

  • In a set of three S haplotypes, whose sequence identities of SP11 and SRK are fairly high, R. sativus S-6 showed the same recognition specificity as Brassica oleracea S-18 and a slightly different specificity from B. rapa S-52 [16].
  • The Garm FatA1, an acyl-acyl carrier protein (ACP) thioesterase isolated from Garcinia mangostana, generates an elevated stearate (18:0) phenotype in transgenic Brassica plants [17].
  • Starting with markers flanking the self-incompatibility genes in Brassica, we identified the homeologous region in Arabidopsis as a previously uncharacterized segment of chromosome 1 in the immediate vicinity of the ethylene response gene ETR1 [18].
  • Relatively high levels of AGL15 are present in the nuclei during embryo morphogenesis and until the seeds start to dry in Brassica, maize, and Arabidopsis [19].
  • Although these hydroxylation and glucosylation reactions occurred in both resistant (S. alba) and susceptible (Brassica napus, Brassica juncea, and Brassica rapa) species, hydroxylation was the rate limiting step in the susceptible species, whereas glucosylation was the rate limiting step in the resistant species [20].
 

Anatomical context of Brassica

  • Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence [21].
  • The turnover in vivo of the Photosystem II (PS II) reaction center D1 protein was investigated by [35S] methionine labeling of leaf discs of Brassica napus and subsequent analysis after thylakoid SDS-gel electrophoresis [22].
  • A monoclonal antibody, designated TeM 106, that recognizes an intrinsic protein from the vacuole membrane (tonoplast) of cauliflower (Brassica oleracea L. var. botrytis) is described [23].
  • To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and determined the molecular signals that maintain their ER residency [24].
  • Indole-3-carbinol (I3C), a naturally occurring compound found in vegetables of the Brassica genus, such as broccoli and cabbage, is a promising anticancer agent previously shown to induce a G(1) cell-cycle arrest in the cells of human lymph node carcinoma of prostate (LNCaP) through regulation of specific G(1)-acting cell-cycle components [25].
 

Associations of Brassica with chemical compounds

  • BACKGROUND: Indole-3-carbinol (I3C) and related compounds have been identified in vegetables of the Brassica genus [26].
  • Distinct cis-acting elements direct pistil-specific and pollen-specific activity of the Brassica S locus glycoprotein gene promoter [27].
  • The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase [28].
  • We have analyzed the temporal and spatial expression of genes encoding the glycoxylate cycle enzymes isocitrate lyase and malate synthase in Brassica napus L. to determine whether they are coordinately expressed [29].
  • Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L [29].
 

Gene context of Brassica

  • Unlike its isoform, AtMRP1, which transports the model Brassica napus chlorophyll catabolite transporter substrate Bn-NCC-1 at low efficiency, heterologously expressed AtMRP2 has the facility for simultaneous high-efficiency parallel transport of GS conjugates and Bn-NCC-1 [30].
  • To corroborate the existence of these isoform groups, we cloned a putative CRT3 ortholog from Brassica rapa [31].
  • To test the effectiveness of tailoring farnesylation in a crop plant, transgenic Brassica napus carrying an ERA1 antisense construct driven by a drought-inducible rd29A promoter was examined [32].
  • ARK1 is a vegetatively expressed receptor protein kinase gene isolated from Arabidopsis thaliana based on its sequence similarity to Brassica genes involved in pollen-stigma signaling and the self-incompatibility response [33].
  • This is in line with a positive association between consumption of brassica vegetables and GSTM isoenzyme level [difference between high and low consumption: 67.5%, 95% CI = (6.8-162.7)] [34].
 

Analytical, diagnostic and therapeutic context of Brassica

References

  1. The integral membrane S-locus receptor kinase of Brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta. Giranton, J.L., Dumas, C., Cock, J.M., Gaude, T. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. Inhibitor binding studies on enoyl reductase reveal conformational changes related to substrate recognition. Roujeinikova, A., Sedelnikova, S., de Boer, G.J., Stuitje, A.R., Slabas, A.R., Rafferty, J.B., Rice, D.W. J. Biol. Chem. (1999) [Pubmed]
  3. Potent ligand-independent estrogen receptor activation by 3,3'-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathways. Leong, H., Riby, J.E., Firestone, G.L., Bjeldanes, L.F. Mol. Endocrinol. (2004) [Pubmed]
  4. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Singh, M., Hamel, N., Menassa, R., Li, X.Q., Young, B., Jean, M., Landry, B.S., Brown, G.G. Genetics (1996) [Pubmed]
  5. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M. Planta (2001) [Pubmed]
  6. Increased allergen production in turnip (Brassica rapa) by treatments activating defense mechanisms. Hänninen, A.R., Mikkola, J.H., Kalkkinen, N., Turjanmaa, K., Ylitalo, L., Reunala, T., Palosuo, T. J. Allergy Clin. Immunol. (1999) [Pubmed]
  7. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Takayama, S., Shimosato, H., Shiba, H., Funato, M., Che, F.S., Watanabe, M., Iwano, M., Isogai, A. Nature (2001) [Pubmed]
  8. The S receptor kinase determines self-incompatibility in Brassica stigma. Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A., Hinata, K. Nature (2000) [Pubmed]
  9. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Kachroo, A., Schopfer, C.R., Nasrallah, M.E., Nasrallah, J.B. Science (2001) [Pubmed]
  10. An aquaporin-like gene required for the Brassica self-incompatibility response. Ikeda, S., Nasrallah, J.B., Dixit, R., Preiss, S., Nasrallah, M.E. Science (1997) [Pubmed]
  11. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Zhu, Y.L., Pilon-Smits, E.A., Tarun, A.S., Weber, S.U., Jouanin, L., Terry, N. Plant Physiol. (1999) [Pubmed]
  12. Crystallographic analysis of triclosan bound to enoyl reductase. Roujeinikova, A., Levy, C.W., Rowsell, S., Sedelnikova, S., Baker, P.J., Minshull, C.A., Mistry, A., Colls, J.G., Camble, R., Stuitje, A.R., Slabas, A.R., Rafferty, J.B., Pauptit, R.A., Viner, R., Rice, D.W. J. Mol. Biol. (1999) [Pubmed]
  13. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Poirier, Y., Erard, N., Petétot, J.M. Appl. Environ. Microbiol. (2001) [Pubmed]
  14. A W-box is required for full expression of the SA-responsive gene SFR2. Rocher, A., Dumas, C., Cock, J.M. Gene (2005) [Pubmed]
  15. Acholeplasma brassicae sp. nov. and Acholeplasma palmae sp. nov., two non-sterol-requiring mollicutes from plant surfaces. Tully, J.G., Whitcomb, R.F., Rose, D.L., Bové, J.M., Carle, P., Somerson, N.L., Williamson, D.L., Eden-Green, S. Int. J. Syst. Bacteriol. (1994) [Pubmed]
  16. Diversification and alteration of recognition specificity of the pollen ligand SP11/SCR in self-incompatibility of Brassica and Raphanus. Sato, Y., Okamoto, S., Nishio, T. Plant Cell (2004) [Pubmed]
  17. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Facciotti, M.T., Bertain, P.B., Yuan, L. Nat. Biotechnol. (1999) [Pubmed]
  18. Comparative mapping of the Brassica S locus region and its homeolog in Arabidopsis. Implications for the evolution of mating systems in the Brassicaceae. Conner, J.A., Conner, P., Nasrallah, M.E., Nasrallah, J.B. Plant Cell (1998) [Pubmed]
  19. The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Perry, S.E., Nichols, K.W., Fernandez, D.E. Plant Cell (1996) [Pubmed]
  20. In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell death and overcoming the fungal invader. Pedras, M.S., Zaharia, I.L., Gai, Y., Zhou, Y., Ward, D.E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  21. Pungent products from garlic activate the sensory ion channel TRPA1. Bautista, D.M., Movahed, P., Hinman, A., Axelsson, H.E., Sterner, O., Högestätt, E.D., Julius, D., Jordt, S.E., Zygmunt, P.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Turnover of the photosystem II D1 protein in higher plants under photoinhibitory and nonphotoinhibitory irradiance. Sundby, C., McCaffery, S., Anderson, J.M. J. Biol. Chem. (1993) [Pubmed]
  23. Monoclonal antibody TeM 106 reacts with a tonoplast intrinsic protein of 106 kDa from Brassica oleracea L. Dozolme, P., Marty-Mazars, D., Clémencet, M.C., Marty, F. J. Cell. Sci. (1995) [Pubmed]
  24. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. McCartney, A.W., Dyer, J.M., Dhanoa, P.K., Kim, P.K., Andrews, D.W., McNew, J.A., Mullen, R.T. Plant J. (2004) [Pubmed]
  25. Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Hsu, J.C., Zhang, J., Dev, A., Wing, A., Bjeldanes, L.F., Firestone, G.L. Carcinogenesis (2005) [Pubmed]
  26. Indolo[3,2-b]carbazole: a dietary-derived factor that exhibits both antiestrogenic and estrogenic activity. Liu, H., Wormke, M., Safe, S.H., Bjeldanes, L.F. J. Natl. Cancer Inst. (1994) [Pubmed]
  27. Distinct cis-acting elements direct pistil-specific and pollen-specific activity of the Brassica S locus glycoprotein gene promoter. Dzelzkalns, V.A., Thorsness, M.K., Dwyer, K.G., Baxter, J.S., Balent, M.A., Nasrallah, M.E., Nasrallah, J.B. Plant Cell (1993) [Pubmed]
  28. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Goring, D.R., Rothstein, S.J. Plant Cell (1992) [Pubmed]
  29. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Comai, L., Dietrich, R.A., Maslyar, D.J., Baden, C.S., Harada, J.J. Plant Cell (1989) [Pubmed]
  30. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1. Lu, Y.P., Li, Z.S., Drozdowicz, Y.M., Hortensteiner, S., Martinoia, E., Rea, P.A. Plant Cell (1998) [Pubmed]
  31. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Persson, S., Rosenquist, M., Svensson, K., Galvão, R., Boss, W.F., Sommarin, M. Plant Physiol. (2003) [Pubmed]
  32. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D.T., McCourt, P., Huang, Y. Plant J. (2005) [Pubmed]
  33. An S-locus-related gene in Arabidopsis encodes a functional kinase and produces two classes of transcripts. Tobias, C.M., Nasrallah, J.B. Plant J. (1996) [Pubmed]
  34. Habitual consumption of fruits and vegetables: associations with human rectal glutathione S-transferase. Wark, P.A., Grubben, M.J., Peters, W.H., Nagengast, F.M., Kampman, E., Kok, F.J., van 't Veer, P. Carcinogenesis (2004) [Pubmed]
  35. Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. Takayama, S., Shiba, H., Iwano, M., Asano, K., Hara, M., Che, F.S., Watanabe, M., Hinata, K., Isogai, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  36. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Knutzon, D.S., Thompson, G.A., Radke, S.E., Johnson, W.B., Knauf, V.C., Kridl, J.C. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  37. Pollen-stigma interaction in Brassica oleracea: the role of stigmatic proteins in pollen grain adhesion. Stead, A.D., Roberts, I.N., Dickinson, H.G. J. Cell. Sci. (1980) [Pubmed]
  38. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Veena, n.u.l.l., Reddy, V.S., Sopory, S.K. Plant J. (1999) [Pubmed]
  39. Activation and potentiation of interferon-gamma signaling by 3,3'-diindolylmethane in MCF-7 breast cancer cells. Riby, J.E., Xue, L., Chatterji, U., Bjeldanes, E.L., Firestone, G.L., Bjeldanes, L.F. Mol. Pharmacol. (2006) [Pubmed]
 
WikiGenes - Universities