The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification and characterization of electron-transfer flavoprotein: rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum.

Electron-transfer flavoprotein:rhodoquinone oxidoreductase (ETF-RO) was purified to homogeneity from anaerobic mitochondria of the parasitic nematode, Ascaris suum. The enzyme has a subunit molecular mass of 64.5 kDa and is similar in many respects to the electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF-UO) characterized in mammalian tissues. EPR spectroscopy of the purified enzyme revealed signals at g = 2.076, 1,936, and 1.883, arising from an iron-sulfur center, as well as signals attributable to a flavin semiquinone. Potentiometric titration on the enzyme with dithionite yielded an oxidation-reduction midpoint potential (Em) for the iron-sulfur center of +25 mV at pH 7. 4. The reduction of flavin occurred in two distinct steps, with a flavin semiquinone radical detected as an intermediate. The Em values for the two steps in the complete reduction of flavin were +15 mV and -9 mV, respectively. Physiologically, the ascarid ETF-RO accepts electrons from a low potential quinone, rhodoquinone, and functions in a direction opposite to that of the ETF-UO. Incubations of A. suum submitochondrial particles with NADH, 2-methylcrotonyl-CoA, purified A. suum electron-transfer flavoprotein and 2-methyl branched-chain enoyl-CoA reductase resulted in significant 2-methylbutyryl-CoA formation, which was inhibited by both rotenone and antisera to the purified ETF-RO. Quinone extraction of the submitchondrial particles with dry pentane resulted in almost the complete loss of 2-MBCoA formation by the system. However, the reincorporation of rhodoquinone, but not ubiquinone restored over 50% of the NADH-dependent 2-MBCoA formation.[1]

References

 
WikiGenes - Universities