The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Endothelin-1 and angiotensin II receptors in cells from rat hypertrophied heart. Receptor regulation and intracellular Ca2+ modulation.

This study investigates the cellular localization and regulation of endothelin-1 (ET-1) and angiotensin II (Ang II) receptors and the effects of ET-1 and Ang II on [Ca2+]i in cardiac hypertrophy due to volume overload in the rat. Radioligand binding assays and [Ca2+]i measurements by fura 2 methodology were performed on isolated ventricular cardiomyocytes and fibroblasts from the heart of rats with a 4-week aortocaval shunt. In the hypertrophied myocardium, ET-1 and Ang II concentrations were unchanged in ventricles. Ventricular ET-1 receptors had a cell-specific distribution: > 90% of ET receptors in cardiomyocytes are of the ETA subtype, whereas fibroblasts had a nearly equal proportion of the ETA and ETB subtypes. ET-1 receptor densities, affinities, and ET-1-induced [Ca2+]i were not significantly different from control in both ventricular cell types from hypertrophied myocardium. Ang II specific binding was very low on isolated ventricular cardiomyocytes, suggesting few receptors in control conditions. However, [Ca2+]i responses induced by Ang II at concentrations > 10(-8) mol/L were detectable and were significantly higher in hypertrophied cardiomyocytes. Ang II receptor density (exclusively AT1) on fibroblasts was significantly reduced (42,970 +/- 3330 versus 73,870 +/- 7940 sites per cell for control cells, P < .01), but AT1 receptor affinity was unchanged after volume overload. The maximum increase in [Ca2+]i evoked by 10(-6) to 10(-4) mol/L Ang II was significantly lower in fibroblasts from overloaded hearts. In conclusion, ET-1 receptor proportion is cell specific, with cardiomyocytes possessing predominantly the ETA subtype and fibroblasts possessing both ETA and ETB receptors. Plasma and cardiac ET-1 concentrations and ET-1 receptor regulation on both ventricular cell types are not altered in cardiac volume overload, suggesting that cardiac ET-1 may not play a significant role in this model. Cardiac hypertrophy induced a significant downregulation of AT1 receptors on fibroblasts, whereas total binding and [Ca2+]i sensitivity to Ang II were significantly enhanced in hypertrophied cardiomyocytes. This suggests that cardiac Ang II may be involved in the pathophysiology of the cardiac hypertrophy of volume overload.[1]


WikiGenes - Universities