The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cardiac Volume

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cardiac Volume

 

High impact information on Cardiac Volume

  • At 4 weeks, negative sodium balance was achieved (52 +/- 21 mmol/day; P < 0.01), despite continued systemic arterial vasodilatation, associated with significant increases in total central and cardiac volumes (P < 0.05) and normalization of serum aldosterone levels (P < 0.01) [6].
  • Moreover, the low affinity of enalapril for cardiac ACE appears to lead to continuous angiotensin II generation in the heart and can thus explain the failure of enalapril to attenuate hypertrophic response of the heart induced by shunt despite decreasing cardiac volume overload [7].
  • Cardiac volume overload by aortocaval shunt or minoxidil treatment decreased LV collagen accumulation as compared with control rats [8].
  • CONCLUSIONS: Cardiac volume overload, even when accompanied by increased plasma renin activity, decreases LV collagen accumulation, suggesting that in contrast to the stimulatory effect of systolic wall stress, increased diastolic wall stress inhibits collagen accumulation [8].
  • The effect of cardiac volume overload on both left ventricular (LV) and right ventricular (RV) collagen and elastin and the possible role of the RAS in such changes have not yet been assessed [8].
 

Chemical compound and disease context of Cardiac Volume

 

Biological context of Cardiac Volume

 

Anatomical context of Cardiac Volume

  • Measurements included conventional hemodynamic and echocardiographic variables of cardiac volume conditions and systolic function of the left ventricle (fractional area change [FAC], velocity of myocardial fiber shortening) using a transesophageal probe, arterial and mixed venous blood gas parameters, and serum thyroid hormone concentrations [14].
  • A small balloon placed at the junction of the superior vena cava and right atrium was used to stimulate cardiac volume receptors in pentobarbital sodium-anesthetized male rats [15].
 

Associations of Cardiac Volume with chemical compounds

  • One trophic factor may be cardiac angiotensin II generated via an angiotensin II-forming enzyme resistant to ACEI and possibly activated by cardiac volume overload [16].
  • Verapamil, but not propranolol, increased (p less than .05) cardiac volumes of resting subjects; used in combination, no further increase in LV volume occurred [17].
  • Therefore to explain the effect of nitroglycerin on exercise capacity additional economizing changes in myocardial performance (e.g., reduction of heart volume) are required [18].
  • A high intravenous dose of norepinephrine (4 micrograms/kg/min for 60 minutes) to New Zealand Red rabbits produced patchy subendocardial damage (estimated stereologically in frozen sections) of about 5% of the heart volume 2 days after application [19].
  • To investigate the possible contributions of cardiac volume overload and cardiac sympathetic hyperactivity in the effects of sodium on cardiac mass, we evaluated the effects of treatment with saline (1%) and deoxycorticosterone acetate + saline (DOCA/saline) for 10 days and 3 and 6 weeks on ventricular anatomy and intracardiac pressures [20].
 

Gene context of Cardiac Volume

  • Plasma and cardiac ET-1 concentrations and ET-1 receptor regulation on both ventricular cell types are not altered in cardiac volume overload, suggesting that cardiac ET-1 may not play a significant role in this model [21].
  • To investigate the regulation of the angiotensin receptor type 1 (AT1) in different organs in cardiac volume overload, we measured AT1 mRNA content in the atria, left and right ventricle, kidney and liver of rats with an aortocaval shunt, produced by infrarenal aortocaval puncture 4 weeks earlier [12].
  • In the IHD group there was a significant positive correlation between heart volume and TH activity [22].
  • Left heart volume characteristics following ventricular septal defect closure in infancy [23].
  • The CT-based three-dimensional treatment-planning system (TMS) represents a valuable tool in identifying such patients; thus, treatment may be conformed to reduce the irradiated heart volume [24].
 

Analytical, diagnostic and therapeutic context of Cardiac Volume

References

  1. Afterload reduction by nifedipine--the acute haemodynamic response to exercise in hypertensive subjects. Wathen, C.G., Hannan, W.J., Turnbull, L.W., Muir, A.L. Eur. Heart J. (1985) [Pubmed]
  2. Effects of continuous positive airway pressure on cardiac volumes in patients with ischemic and dilated cardiomyopathy. Mehta, S., Liu, P.P., Fitzgerald, F.S., Allidina, Y.K., Douglas Bradley, T. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  3. Comparative response of right and left ventricles to volume overload. Mathew, R., Thilenius, O.G., Arcilla, R.A. Am. J. Cardiol. (1976) [Pubmed]
  4. An antidiabetic thiazolidinedione induces eccentric cardiac hypertrophy by cardiac volume overload in rats. Arakawa, K., Ishihara, T., Aoto, M., Inamasu, M., Kitamura, K., Saito, A. Clin. Exp. Pharmacol. Physiol. (2004) [Pubmed]
  5. Transcatheter closure of secundum atrial septal defects with the amplatzer septal occluder: early experience. Matitiau, A., Birk, E., Kachko, L., Blieden, L.C., Bruckheimer, E. Isr. Med. Assoc. J. (2001) [Pubmed]
  6. The mechanism of the initial natriuresis after transjugular intrahepatic portosystemic shunt. Wong, F., Sniderman, K., Liu, P., Blendis, L. Gastroenterology (1997) [Pubmed]
  7. Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Ruzicka, M., Leenen, F.H. Circulation (1995) [Pubmed]
  8. The renin-angiotensin system and volume overload-induced changes in cardiac collagen and elastin. Ruzicka, M., Keeley, F.W., Leenen, F.H. Circulation (1994) [Pubmed]
  9. Arterial vasodilation and cardiovascular structural changes in normotensive rats. Tsoporis, J., Fields, N., Lee, R.M., Leenen, F.H. Am. J. Physiol. (1991) [Pubmed]
  10. Cardiopulmonary receptor modulation of plasma renin activity in normotensive and hypertensive subjects. Grassi, G., Giannattasio, C., Saino, A., Sabadini, E., Capozi, A., Sampieri, L., Cuspidi, C., Mancia, G. Hypertension (1988) [Pubmed]
  11. Usefulness of temporal changes in neurohormones as markers of ventricular remodeling and prognosis in patients with left ventricular systolic dysfunction and heart failure receiving either candesartan or enalapril or both. Yan, R.T., White, M., Yan, A.T., Yusuf, S., Rouleau, J.L., Maggioni, A.P., Hall, C., Latini, R., Afzal, R., Floras, J., Masson, S., McKelvie, R.S. Am. J. Cardiol. (2005) [Pubmed]
  12. Myocardial angiotensin receptor type 1 gene expression in a rat model of cardiac volume overload. Bauer, P., Regitz-Zagrosek, V., Kallisch, H., Linz, W., Schoelkens, B., Hildebrandt, A.G., Fleck, E. Basic Res. Cardiol. (1997) [Pubmed]
  13. Role of cardiac volume receptors in the control of ADH release during acute simulated weightlessness in man. Convertino, V.A., Benjamin, B.A., Keil, L.C., Sandler, H. Physiologist (1984) [Pubmed]
  14. The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Goarin, J.P., Cohen, S., Riou, B., Jacquens, Y., Guesde, R., Le Bret, F., Aurengo, A., Coriat, P. Anesth. Analg. (1996) [Pubmed]
  15. Effects of right atrial distension on the activity of magnocellular neurons in the supraoptic nucleus. Grindstaff, R.R., Grindstaff, R.J., Cunningham, J.T. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2000) [Pubmed]
  16. The renin-angiotensin system and volume overload-induced cardiac hypertrophy in rats. Effects of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker. Ruzicka, M., Yuan, B., Harmsen, E., Leenen, F.H. Circulation (1993) [Pubmed]
  17. Comparative effects of propranolol and verapamil alone and in combination on left ventricular function and volumes in patients with chronic exertional angina: a double-blind, placebo-controlled, randomized, crossover study with radionuclide ventriculography. Johnston, D.L., Gebhardt, V.A., Donald, A., Kostuk, W.J. Circulation (1983) [Pubmed]
  18. Heart rate and arterial blood pressure during exercise in patients with angina pectoris. Effects of training and of nitroglycerin. Clausen, J.P., Trap-Jensen, J. Circulation (1976) [Pubmed]
  19. Protective effects of long-term bradycardial pacing against catecholamine-induced myocardial damage in rabbit hearts. Brown, M.D., Hudlická, O. Circ. Res. (1988) [Pubmed]
  20. Sodium-induced cardiac hypertrophy. Cardiac sympathetic activity versus volume load. Fields, N.G., Yuan, B.X., Leenen, F.H. Circ. Res. (1991) [Pubmed]
  21. Endothelin-1 and angiotensin II receptors in cells from rat hypertrophied heart. Receptor regulation and intracellular Ca2+ modulation. Fareh, J., Touyz, R.M., Schiffrin, E.L., Thibault, G. Circ. Res. (1996) [Pubmed]
  22. Auricular tyrosine hydroxylase and dopamine-beta-hydroxylase activities and noradrenaline content in ischaemic heart disease. Penttilä, O., Merikallio, E., Pispa, J., Klinge, E., Siltanen, P., Kyösola, K. Acta medica Scandinavica. (1978) [Pubmed]
  23. Left heart volume characteristics following ventricular septal defect closure in infancy. Cordell, D., Graham, T.P., Atwood, G.F., Boerth, R.C., Boucek, R.J., Bender, H.W. Circulation (1976) [Pubmed]
  24. Evaluation of irradiated heart volumes in stage I breast cancer patients treated with postoperative adjuvant radiotherapy. Gyenes, G., Gagliardi, G., Lax, I., Fornander, T., Rutqvist, L.E. J. Clin. Oncol. (1997) [Pubmed]
  25. Effects of aminophylline on cardiac function and regional myocardial perfusion: implications regarding its antiischemic action. Crea, F., Gaspardone, A., Araujo, L., Da Silva, R., Kaski, J.C., Davies, G., Maseri, A. Am. Heart J. (1994) [Pubmed]
  26. Effects of low-dose adrenomedullin on cardiac function and systemic haemodynamics in man. Del Bene, R., Lazzeri, C., Barletta, G., Vecchiarino, S., Guerra, C.T., Franchi, F., La Villa, G. Clinical physiology (Oxford, England) (2000) [Pubmed]
 
WikiGenes - Universities