The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria.

Site-specific endonucleases have been found in various eukaryotic organelles such as mitochondria, chloroplasts and nuclei. These endonucleases initiate site-specific or homologous gene conversion in mitochondrial and nuclear DNA. Here, we report a new site-specific endonuclease activity, Endo.SK1, identified in mitochondria of strain SK1, a homothallic diploid strain of Saccharomyces cerevisiae. Nucleotide sequences around the Endo.SK1-cleavage sites are different from those of known yeast site-specific endonucleases. The Endo.SK1 activity is, at least partly, specified by a gene in the SK1-derived mitochondria. A novel feature of the Endo.SK1 activity is its inducibility: the endonuclease activity was induced by ca. 40-fold by transfer of cells from a glucose medium into an acetate medium, and was then repressed. This transient induction was independent of the ploidy level of the cells, and coincided with induction of fumarase, a mitochondrial enzyme involved in the TCA cycle. Co-induction and co-repression of the mitochondrial site-specific endonuclease activity and a respiration-related enzyme indicate that the endonuclease activity in regulated in response to physiological conditions, and suggest a possible role for the endonuclease in mitochondrial DNA metabolism.[1]

References

  1. Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria. Ohta, K., Nicolas, A., Keszenman-Pereyra, D., Shibata, T. Mol. Gen. Genet. (1996) [Pubmed]
 
WikiGenes - Universities