The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

FUM1  -  fumarase FUM1

Saccharomyces cerevisiae S288c

Synonyms: Fumarase, Fumarate hydratase, mitochondrial, YPL262W
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of FUM1

 

High impact information on FUM1

  • The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae [4].
  • All fumarase molecules synthesized in the cell are processed by the mitochondrial matrix signal peptidase; nevertheless, most of the enzyme (80 to 90%) ends up in the cytosol [4].
  • The amino termini of most fumarase molecules are translocated across the mitochondrial membranes and processed [5].
  • Northern and S1 nuclease analysis of fumarase transcripts in wild type yeast and in a mutant transformed with FUM1 on an episomal plasmid indicate that the gene is transcribed from multiple start sites, some of which are located inside the coding sequence [6].
  • In addition, the binding of yeast fumarase, mitochondrial malate dehydrogenase, and cytosolic malate dehydrogenase to yeast inner membranes was examined [7].
 

Biological context of FUM1

 

Anatomical context of FUM1

 

Associations of FUM1 with chemical compounds

  • Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid [11].
  • The expression levels of the MDH and FUM1 genes in one mutant (M20), which produced the highest amount of malate among the mutants obtained, were analyzed by Northern hybridization [12].
  • On nonfermentable lactate medium, the fumarase knockout strains did not grow, whereas the mutants showed no differences, as compared to WT yeast [1].
  • As a comparison, native fumarase was crystallized in the presence of the competitive inhibitor, meso-tartrate [13].
  • Accumulation of fumaric acid is presumably caused by high intracellular L-malic acid concentrations and the activity of the cytosolic fumarase [14].
 

Regulatory relationships of FUM1

 

Other interactions of FUM1

 

Analytical, diagnostic and therapeutic context of FUM1

References

  1. Modeling tumor predisposing FH mutations in yeast: Effects on fumarase activity, growth phenotype and gene expression profile. Kokko, A., Ylisaukko-Oja, S.S., Kiuru, M., Takatalo, M.S., Salmikangas, P., Tuimala, J., Arango, D., Karhu, A., Aaltonen, L.A., Jäntti, J. Int. J. Cancer (2006) [Pubmed]
  2. Two biochemically distinct classes of fumarase in Escherichia coli. Woods, S.A., Schwartzbach, S.D., Guest, J.R. Biochim. Biophys. Acta (1988) [Pubmed]
  3. Cloning, sequencing, and mutational analysis of the Bradyrhizobium japonicum fumC-like gene: evidence for the existence of two different fumarases. Acuña, G., Ebeling, S., Hennecke, H. J. Gen. Microbiol. (1991) [Pubmed]
  4. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae. Stein, I., Peleg, Y., Even-Ram, S., Pines, O. Mol. Cell. Biol. (1994) [Pubmed]
  5. Import into mitochondria, folding and retrograde movement of fumarase in yeast. Knox, C., Sass, E., Neupert, W., Pines, O. J. Biol. Chem. (1998) [Pubmed]
  6. Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. Wu, M., Tzagoloff, A. J. Biol. Chem. (1987) [Pubmed]
  7. The interaction of yeast citrate synthase with yeast mitochondrial inner membranes. Brent, L.G., Srere, P.A. J. Biol. Chem. (1987) [Pubmed]
  8. A single base-pair change (ATG-->ATC) nullifies the activity of cytosolic fumarase in Saccharomyces cerevisiae. Wu, M., Wong, S.M., Tan, H.M., Ting, R. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  9. Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria. Ohta, K., Nicolas, A., Keszenman-Pereyra, D., Shibata, T. Mol. Gen. Genet. (1996) [Pubmed]
  10. The kinetics of protein salting-out: precipitation of yeast enzymes by ammonium sulfate. Foster, P.R., Dunnill, P., Lilly, M.D. Biotechnol. Bioeng. (1976) [Pubmed]
  11. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid. Peleg, Y., Rokem, J.S., Goldberg, I., Pines, O. Appl. Environ. Microbiol. (1990) [Pubmed]
  12. Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants. Asano, T., Kurose, N., Tarumi, S. J. Biosci. Bioeng. (2001) [Pubmed]
  13. Crystal structures of native and recombinant yeast fumarase. Weaver, T., Lees, M., Zaitsev, V., Zaitseva, I., Duke, E., Lindley, P., McSweeny, S., Svensson, A., Keruchenko, J., Keruchenko, I., Gladilin, K., Banaszak, L. J. Mol. Biol. (1998) [Pubmed]
  14. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Pines, O., Shemesh, S., Battat, E., Goldberg, I. Appl. Microbiol. Biotechnol. (1997) [Pubmed]
  15. Proteomic analysis of Candida magnoliae strains by two-dimensional gel electrophoresis and mass spectrometry. Lee, D.Y., Park, Y.C., Kim, H.J., Ryu, Y.W., Seo, J.H. Proteomics (2003) [Pubmed]
  16. Impact of cell disruption and polymer recycling upon aqueous two-phase processes for protein recovery. Rito-Palomares, M., Lyddiatt, A. J. Chromatogr. B, Biomed. Appl. (1996) [Pubmed]
  17. Purification, characterization and preliminary X-ray study of fumarase from Saccharomyces cerevisiae. Keruchenko, J.S., Keruchenko, I.D., Gladilin, K.L., Zaitsev, V.N., Chirgadze, N.Y. Biochim. Biophys. Acta (1992) [Pubmed]
 
WikiGenes - Universities