Molecular cloning and characterization of a novel human diacylglycerol kinase zeta.
Diacylglycerol (DAG) occupies a central position in the synthesis of complex lipids and also has important signaling roles. For example, DAG is an allosteric regulator of protein kinase C, and the cellular levels of DAG may influence a variety of processes including growth and differentiation. We previously demonstrated that human endothelial cells derived from umbilical vein express growth-dependent changes in their basal levels of diacylglycerol and diacylglycerol kinase activity (Whatley, R. E., Stroud, E. D., Bunting, M., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M. (1993) J. Biol. Chem. 268, 16130-16138). To further explore the role of diacylglycerol metabolism in endothelial responses, we used a degenerate reverse transcription-polymerase chain reaction method to identify diacylglycerol kinase isozymes expressed by human endothelial cells. We report the isolation of a 3.5-kilobase cDNA encoding a novel diacylglycerol kinase (hDGKzeta) with a predicted molecular mass of 103.9 kDa. Human DGK zeta contains two zinc fingers, an ATP binding site, and four ankyrin repeats near the carboxyl terminus. A unique feature, as compared with other diacylglycerol kinases, is the presence of a sequence homologous to the MARCKS phosphorylation site domain. From Northern blot analysis of multiple tissues, we observed that hDGKzeta mRNA is expressed at highest levels in brain. COS-7 cells transfected with the hDGKzeta cDNA express 117-kDa and 114-kDa proteins that react specifically with an antibody to a peptide derived from a unique sequence in hDGK zeta. The transfected cells also express increased diacylglycerol kinase activity, which is not altered in the presence of R59949, an inhibitor of human platelet DGK activity. The hDGKzeta displays stereoselectivity for 1,2-diacylglycerol species in comparison to 1,3-diacylglycerol, but does not exhibit any specificity for molecular species of long chain diacylglycerols.[1]References
- Molecular cloning and characterization of a novel human diacylglycerol kinase zeta. Bunting, M., Tang, W., Zimmerman, G.A., McIntyre, T.M., Prescott, S.M. J. Biol. Chem. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg