The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEBI:17815     [(2S)-3-hydroxy-2- methanoyloxy-propyl]...

Synonyms: AC1O4WBI, 1,2-diacyl-sn-glycerols, a 1,2-diacyl-sn-glycerol, [(2S)-2-formyloxy-3-hydroxypropyl] formate
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of D-1,2-Diacylglycerol


High impact information on D-1,2-Diacylglycerol

  • SMase activation is secondary to the generation of 1,2-diacylglycerol (DAG) produced by a TNF-responsive PC-specific phospholipase C (PC-PLC) [6].
  • These findings suggest that a source other than phosphoinositides exists for the generation of 1,2-diacylglycerol and that the Ha-ras oncogene specifically activates this novel pathway for 1,2-diacylglycerol production [7].
  • The bifurcating nature of the signalling system is exemplified by the fact that the other product of PtdIns(4,5)P2 hydrolysis, 1,2-diacylglycerol, can alter cellular function by activating protein kinase C, the cellular target for several tumour-promoting agents such as the phorbol esters [8].
  • However, either one in combination with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which is structurally related to 1,2-diacylglycerol, induces in lymphoid cell populations the expression of receptors for interleukin-2 (IL-2), the secretion of IL-2 and cell proliferation as measured by 3H-thymidine uptake [9].
  • The role of cyclic AMP may involve either inhibition of Ca2+ mobilization to the cytosol or stimulation of intracellular Ca2+ uptake, and in addition inhibition of 1,2-diacylglycerol formation [10].

Chemical compound and disease context of D-1,2-Diacylglycerol


Biological context of D-1,2-Diacylglycerol


Anatomical context of D-1,2-Diacylglycerol


Associations of D-1,2-Diacylglycerol with other chemical compounds


Gene context of D-1,2-Diacylglycerol

  • The CD28 molecule also appears to activate polyphosphoinositide (InsPL)-specific phospholipase C (PLC) activity in Jurkat cells, as demonstrated by PtdInsP2 breakdown, InsP3 and 1,2-diacylglycerol generation and PtdIns resynthesis [29].
  • In response to the activation of phospholipase C by toxic drugs and the local production of 1,2-diacylglycerol, PKC is translocated to the cell membrane where it phosphorylates P-gp [30].
  • The present studies aim to investigate the mechanism of TGF beta 1 signaling and to explore whether TGF beta 1's pathway involves activation of PKC by 1,2-Diacylglycerol (DAG) and/or stimulation of a CAPK by ceramide [31].
  • However, the mechanism of SRIF's action on TRH is not clear, since SRIF did not affect the intracellular responses by TRH, neither intracellular Ca2+ mobilization nor the increase of 1,2-diacylglycerol formation following the breakdown of polyphosphoinositides [32].
  • The hDGKzeta displays stereoselectivity for 1,2-diacylglycerol species in comparison to 1,3-diacylglycerol, but does not exhibit any specificity for molecular species of long chain diacylglycerols [33].

Analytical, diagnostic and therapeutic context of D-1,2-Diacylglycerol


  1. Protein kinase regulates tumor necrosis factor mRNA stability in virus-stimulated astrocytes. Lieberman, A.P., Pitha, P.M., Shin, M.L. J. Exp. Med. (1990) [Pubmed]
  2. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. Burgess, G.M., Mullaney, I., McNeill, M., Dunn, P.M., Rang, H.P. J. Neurosci. (1989) [Pubmed]
  3. Activating amphiphiles cause a conformational change of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes according to proteolytic digestion. Li, L., Karlsson, O.P., Wieslander, A. J. Biol. Chem. (1997) [Pubmed]
  4. Quantitative analysis of molecular species of diacylglycerol and phosphatidate formed upon muscarinic receptor activation of human SK-N-SH neuroblastoma cells. Lee, C., Fisher, S.K., Agranoff, B.W., Hajra, A.K. J. Biol. Chem. (1991) [Pubmed]
  5. Vascular smooth muscle cell signaling in cirrhosis and portal hypertension. Bomzon, A., Huang, Y.T. Pharmacol. Ther. (2001) [Pubmed]
  6. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Schütze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., Krönke, M. Cell (1992) [Pubmed]
  7. Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Lacal, J.C., Moscat, J., Aaronson, S.A. Nature (1987) [Pubmed]
  8. Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. Drummond, A.H. Nature (1985) [Pubmed]
  9. Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Truneh, A., Albert, F., Golstein, P., Schmitt-Verhulst, A.M. Nature (1985) [Pubmed]
  10. Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Knight, D.E., Scrutton, M.C. Nature (1984) [Pubmed]
  11. Receptor-linked early events induced by vasoactive intestinal contractor (VIC) on neuroblastoma and vascular smooth-muscle cells. Fu, T., Okano, Y., Zhang, W., Ozeki, T., Mitsui, Y., Nozawa, Y. Biochem. J. (1990) [Pubmed]
  12. Kinetics of diacylglycerol accumulation in response to vasopressin stimulation in hepatocytes of continuously endotoxaemic rats. Rodriguez de Turco, E.B., Spitzer, J.A. Biochem. J. (1988) [Pubmed]
  13. Signal transduction mechanism involved in Clostridium perfringens alpha-toxin-induced superoxide anion generation in rabbit neutrophils. Oda, M., Ikari, S., Matsuno, T., Morimune, Y., Nagahama, M., Sakurai, J. Infect. Immun. (2006) [Pubmed]
  14. Increased phospholipase C-catalyzed hydrolysis of phosphatidylinositol-4,5-bisphosphate and 1,2-sn-diacylglycerol content in psoriatic involved compared to uninvolved and normal epidermis. Fisher, G.J., Talwar, H.S., Baldassare, J.J., Henderson, P.A., Voorhees, J.J. J. Invest. Dermatol. (1990) [Pubmed]
  15. Impact of alpha-tocopherol on cardiac hypertrophy due to energy metabolism disorder: the involvement of 1,2-diacylglycerol. Takahashi, R., Okumura, K., Matsui, H., Saburi, Y., Kamiya, H., Matsubara, K., Asai, T., Ito, M., Murohara, T. Cardiovasc. Res. (2003) [Pubmed]
  16. Thyroid-stimulating hormone and insulin-like growth factor-1 synergize to elevate 1,2-diacylglycerol in rat thyroid cells. Stimulation of DNA synthesis via interaction between lipid and adenylyl cyclase signal transduction systems. Brenner-Gati, L., Berg, K.A., Gershengorn, M.C. J. Clin. Invest. (1988) [Pubmed]
  17. Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata. Lee, Y., Assmann, S.M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  18. Identification of the parasite transferrin receptor of Plasmodium falciparum-infected erythrocytes and its acylation via 1,2-diacyl-sn-glycerol. Haldar, K., Henderson, C.L., Cross, G.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  19. Direct stimulation of Vav guanine nucleotide exchange activity for Ras by phorbol esters and diglycerides. Gulbins, E., Coggeshall, K.M., Baier, G., Telford, D., Langlet, C., Baier-Bitterlich, G., Bonnefoy-Berard, N., Burn, P., Wittinghofer, A., Altman, A. Mol. Cell. Biol. (1994) [Pubmed]
  20. Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Allan, D., Michell, R.H. Nature (1975) [Pubmed]
  21. Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans. Wolf, B.A., Easom, R.A., McDaniel, M.L., Turk, J. J. Clin. Invest. (1990) [Pubmed]
  22. Signal transduction pathways associated with contraction during development of the feline gastric antrum. Hillemeier, A.C., Deutsch, D.E., Bitar, K.N. Gastroenterology (1997) [Pubmed]
  23. Do thylakoids really contain phosphatidylcholine? Dorne, A.J., Joyard, J., Douce, R. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  24. Leukocyte chemoattraction by 1,2-diacylglycerol. Wright, T.M., Hoffman, R.D., Nishijima, J., Jakoi, L., Snyderman, R., Shin, H.S. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  25. The relative role of PLCbeta and PI3Kgamma in platelet activation. Lian, L., Wang, Y., Draznin, J., Eslin, D., Bennett, J.S., Poncz, M., Wu, D., Abrams, C.S. Blood (2005) [Pubmed]
  26. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Flick, J.S., Thorner, J. Mol. Cell. Biol. (1993) [Pubmed]
  27. Elevated phosphocholine concentration in ras-transformed NIH 3T3 cells arises from increased choline kinase activity, not from phosphatidylcholine breakdown. Macara, I.G. Mol. Cell. Biol. (1989) [Pubmed]
  28. Phosphatidylcholine is a quantitatively more important source of increased 1,2-diacylglycerol than is phosphatidylinositol in mast cells. Kennerly, D.A. J. Immunol. (1990) [Pubmed]
  29. Signalling through CD28 T-cell activation pathway involves an inositol phospholipid-specific phospholipase C activity. Nunes, J., Klasen, S., Franco, M.D., Lipcey, C., Mawas, C., Bagnasco, M., Olive, D. Biochem. J. (1993) [Pubmed]
  30. Rational design and pre-clinical pharmacology of drugs for reversing multidrug resistance. Hait, W.N., Aftab, D.T. Biochem. Pharmacol. (1992) [Pubmed]
  31. The rise and fall of ceramide and 1,2-diacylglycerol (DAG): modulation by transforming growth factor-beta 1 (TGF beta 1) and by epidermal growth factor (EGF). Goldkorn, T., Ding, T. Adv. Exp. Med. Biol. (1997) [Pubmed]
  32. Pertussis toxin blocks the inhibitory effects of somatostatin on cAMP-dependent vasoactive intestinal peptide and cAMP-independent thyrotropin releasing hormone-stimulated prolactin secretion of GH3 cells. Yajima, Y., Akita, Y., Saito, T. J. Biol. Chem. (1986) [Pubmed]
  33. Molecular cloning and characterization of a novel human diacylglycerol kinase zeta. Bunting, M., Tang, W., Zimmerman, G.A., McIntyre, T.M., Prescott, S.M. J. Biol. Chem. (1996) [Pubmed]
  34. Diacylglycerol production in Xenopus laevis oocytes after microinjection of p21ras proteins is a consequence of activation of phosphatidylcholine metabolism. Lacal, J.C. Mol. Cell. Biol. (1990) [Pubmed]
  35. Degradation of different molecular species of phosphatidylinositol in thrombin-stimulated human platelets. Mahadevappa, V.G., Holub, B.J. J. Biol. Chem. (1983) [Pubmed]
  36. Hormonal stimulation of diacylglycerol formation in hepatocytes. Evidence for phosphatidylcholine breakdown. Augert, G., Bocckino, S.B., Blackmore, P.F., Exton, J.H. J. Biol. Chem. (1989) [Pubmed]
  37. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. Turinsky, J., O'Sullivan, D.M., Bayly, B.P. J. Biol. Chem. (1990) [Pubmed]
  38. Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. Bocckino, S.B., Blackmore, P.F., Exton, J.H. J. Biol. Chem. (1985) [Pubmed]
WikiGenes - Universities