TSG-6 expression in human articular chondrocytes. Possible implications in joint inflammation and cartilage degradation.
OBJECTIVE: The hyaluronan-binding protein TSG-6 (tumor necrosis factor- stimulated gene 6) forms a stable complex with the serine protease inhibitor, inter-alpha-inhibitor, potentiates the inhibition of plasmin activity, and has antiinflammatory effects in vivo. This study examines the expression of TSG-6 in human articular chondrocytes and cartilage. METHODS: Human articular chondrocytes and cartilage explants were stimulated with cytokines, growth factors, and other agents. TSG-6 expression was analyzed by imaging-assisted Northern and Western blotting. RESULT: TSG-6 messenger RNA (mRNA) expression was upregulated by cytokines and growth factors, predominantly interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha (TNF alpha), platelet-derived growth factor AA (PDGF-AA), and transforming growth factor beta 1 (TGF beta 1). TSG-6 mRNA induction by TGF beta 1 was delayed as compared with IL-1beta. Treatment of the cells with the glucocorticoid dexamethasone neither induced TSG-6 mRNA nor did it affect IL-1 beta-induced transcript levels. TSG-6 mRNA induction may involve several signal transduction pathways. The strong transcriptional stimulation by phorbol myristate acetate suggests protein kinase C (PKC)-mediated signaling. In contrast, PKA- and Ca- dependent signals are only marginally involved as messengers leading to increased TSG-6 levels after IL-1beta and TNF alpha treatment. In chondrocyte and cartilage organ cultures, both free TSG-6 (35 kd) and the complex with inter-alpha-inhibitor (120 kd) were present and upregulated by IL-1 beta, TNF alpha, or TGF beta 1. CONCLUSION: Chondrocytes are a source of TSG-6 which may play a role in cartilage remodeling and joint inflammation.[1]References
- TSG-6 expression in human articular chondrocytes. Possible implications in joint inflammation and cartilage degradation. Maier, R., Wisniewski, H.G., Vilcek, J., Lotz, M. Arthritis Rheum. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg