The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The yeast VRG4 gene is required for normal Golgi functions and defines a new family of related genes.

Sodium vanadate is an effective agent for the enrichment of yeast mutants with defects in glycosylation steps that occur in the Golgi complex (Ballou, L., Hitzeman, R. A., Lewis, M. S., and Ballou, C. E. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 3209-3212). We isolated and screened vanadate-resistant glycosylation mutants in the budding yeast, Saccharomyces cerevisiae, to identify any that may be defective in the secretory pathway, since changes in normal glycosylation may reflect defects within the secretory pathway. We identified one such mutant, allelic to vrg4/van2, that is defective in processes that occur specifically in the Golgi complex. Protein secreted from vrg4 mutants lacks the outer chain glycosylation that is normally extended during passage through the Golgi. This mutant fails to retrieve soluble endoplasmic reticulum proteins from the Golgi and accumulates the Golgi-specific biosynthetic intermediate of the vacuolar protein, carboxypeptidase Y. Analyses of intracellular membranes by staining with the fluorescent lipophilic dye, DiOC6, and by electron microscopy reveals a dramatic alteration in the membrane morphology of vrg4 mutant cells. The VRG4 gene encodes a 36.9-kDa membrane protein that is essential for cell viability. A sequence homology search has identified five related genes, establishing that VRG4 is a founding member of a family of structurally similar genes. Taken together, these results suggest that the VRG4 gene plays an important role in regulating Golgi functions and in maintaining the normal organization of intracellular membranes.[1]

References

 
WikiGenes - Universities