The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Osmoregulation in the renal papilla: membranes, messengers and molecules.

This contribution summarizes recent progress in the understanding of the molecular basis of the release of organic osmolytes that occurs when inner medullary cells are confronted with a drop in osmolarity in their environment. For sorbitol release across the basolateral membrane an increase in intracellular calcium seems to be the prominent signal, initiated by G-protein activation, followed by phosphatidylcholine phospholipase activation and generation of arachidonic acid. The increase in betaine permeability is also G-protein dependent but calcium independent, and is restricted to the basal-lateral cell face. Myo-inositol and glycerophosphorylcholine efflux are calcium and G-protein independent and occur both across the apical and basolateral membrane, although to a different extent. Taurine release is also calcium and G-protein independent; a swelling-activated anion channel at the basolateral membrane represents the major efflux pathway.[1]

References

  1. Osmoregulation in the renal papilla: membranes, messengers and molecules. Kinne, R.K., Boese, S.H., Kinne-Saffran, E., Ruhfus, B., Tinel, H., Wehner, F. Kidney Int. (1996) [Pubmed]
 
WikiGenes - Universities