The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of a novel hypoglycemic agent, KAD-1229 on glucose metabolism and fructose-2,6-bisphosphate content in isolated hepatocytes of normal rats.

The effects of a novel hypoglycemic agent, calcium(2s)-2-benzyl-3-(cis-hexahydro-2-isoindolinylcarbonyl) propionate dihydrate (KAD-1229), which is a benzyl succinate derivative, on liver metabolism were investigated using isolated hepatocytes from normal rats. In the presence of 10 mM glucose, KAD-1229 increased the L-lactate production (41.1 +/- 0.9 versus 60.9 +/- 2.6 mumol of lactate/g of cells/30 min; P < 0.05) and inhibited gluconeogenesis in hepatocytes (0.94 +/- 0.02 versus 0.70 +/- 0.03 mumol of [2-14C]-pyruvate converted to glucose/g of cells/20 min; P < 0.05). These effects by KAD-1229 were accompanied by an increase in the cellular content of fructose-2,6-bisphosphate (F-2,6-P2), which is one of the important regulators of hepatic glucose metabolism, in a dose-dependent manner (0.05-2.5 mM). KAD-1229 also stimulated the oxidation of [2-14C]-pyruvate and [6-14C]-glucose in the tricarboxylic acid cycle (+18 and +31%, respectively), indicating that stimulation of tricarboxylic acid cycle activity and/or enhancement of the glycolytic flux rate had occurred. Moreover, KAD-1229 did not modify the activities of 6-phosphofructo 2-kinase or fructose-2,6-bisphosphatase, but increased significantly the accumulation of fructose 6-phosphate in hepatocytes. These results suggest that KAD-1229 has extrapancreatic effects on hepatic glucose metabolism, that its actions are mediated through the inhibition of fructose-1,6-bisphosphatase and stimulation of both the 6-phosphofructo 1-kinase reaction and tricarboxylic acid cycle activity by increasing the F-2,6-P2 content in hepatocytes, and that these multiple effects may account in part for the ability of KAD-1229 to reduce blood glucose levels in vivo.[1]

References

  1. Effect of a novel hypoglycemic agent, KAD-1229 on glucose metabolism and fructose-2,6-bisphosphate content in isolated hepatocytes of normal rats. Nakashima, E., Nakamura, J., Koh, N., Sakakibara, F., Hamada, Y., Hotta, N. Diabetes Res. Clin. Pract. (1996) [Pubmed]
 
WikiGenes - Universities