The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:28602     [(2S,3S,4S,5R)-3,4-dihydroxy- 2...

Synonyms: HMDB01047, bmse000275, AC1L2XWB, AR-1K7987, AC1Q6S9T, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Phosphofructokinase activation factor

 

High impact information on Phosphofructokinase activation factor

 

Biological context of Phosphofructokinase activation factor

 

Anatomical context of Phosphofructokinase activation factor

 

Associations of Phosphofructokinase activation factor with other chemical compounds

 

Gene context of Phosphofructokinase activation factor

References

  1. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. Obach, M., Navarro-Sabaté, A., Caro, J., Kong, X., Duran, J., Gómez, M., Perales, J.C., Ventura, F., Rosa, J.L., Bartrons, R. J. Biol. Chem. (2004) [Pubmed]
  2. Pyruvate kinase from Chlamydia trachomatis is activated by fructose-2,6-bisphosphate. Iliffe-Lee, E.R., McClarty, G. Mol. Microbiol. (2002) [Pubmed]
  3. The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage. Navas, M.A., Gancedo, J.M. J. Bacteriol. (1996) [Pubmed]
  4. Decreases in hepatic fructose-2,6-bisphosphate level and fructose-6-phosphate,2-kinase activity in diabetic mice: a close relationship to the development of ketosis. Sumi, S., Mineo, I., Kono, N., Shimizu, T., Nonaka, K., Tarui, S. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  5. Changes in fructose-2,6-bisphosphate levels after glucose loading of starved rats. Claus, T.H., Nyfeler, F., Muenkel, H.A., Burns, M.G., Pilkis, S.J. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  6. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E., Vousden, K.H. Cell (2006) [Pubmed]
  7. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. Wu, C., Okar, D.A., Newgard, C.B., Lange, A.J. J. Clin. Invest. (2001) [Pubmed]
  8. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Okar, D.A., Manzano, A., Navarro-Sabatè, A., Riera, L., Bartrons, R., Lange, A.J. Trends Biochem. Sci. (2001) [Pubmed]
  9. 14-3-3s regulate fructose-2,6-bisphosphate levels by binding to PKB-phosphorylated cardiac fructose-2,6-bisphosphate kinase/phosphatase. Pozuelo Rubio, M., Peggie, M., Wong, B.H., Morrice, N., MacKintosh, C. EMBO J. (2003) [Pubmed]
  10. Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. Nielsen, T.H., Rung, J.H., Villadsen, D. Trends Plant Sci. (2004) [Pubmed]
  11. Fructose-1,6-bisphosphatase from rat liver. A comparison of the kinetics of the unphosphorylated enzyme and the enzyme phosphorylated by cyclic AMP-dependent protein kinase. Ekdahl, K.N., Ekman, P. J. Biol. Chem. (1985) [Pubmed]
  12. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. Argaud, D., Kirby, T.L., Newgard, C.B., Lange, A.J. J. Biol. Chem. (1997) [Pubmed]
  13. Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Li, L., Lin, K., Correia, J.J., Pilkis, S.J. J. Biol. Chem. (1992) [Pubmed]
  14. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Almeida, A., Moncada, S., Bolaños, J.P. Nat. Cell Biol. (2004) [Pubmed]
  15. Regulation of fructose-2,6-bisphosphate content in rat hepatocytes, perfused hearts, and perfused hindlimbs. Hue, L., Blackmore, P.F., Shikama, H., Robinson-Steiner, A., Exton, J.H. J. Biol. Chem. (1982) [Pubmed]
  16. Regulatory role of fructose-2,6-bisphosphate in pancreatic islet glucose metabolism remains unsettled. Burch, P.T., Berner, D.K., Najafi, H., Meglasson, M.D., Matschinsky, F.M. Diabetes (1985) [Pubmed]
  17. Increase of the glycolytic rate in human resting fibroblasts following serum stimulation. The possible role of the fructose-2,6-bisphosphate. Bruni, P., Farnararo, M., Vasta, V., D'Alessandro, A. FEBS Lett. (1983) [Pubmed]
  18. Shared active sites of fructose-1,6-bisphosphatase. Arginine 243 mediates substrate binding and fructose 2,6-bisphosphate inhibition. Giroux, E., Williams, M.K., Kantrowitz, E.R. J. Biol. Chem. (1994) [Pubmed]
  19. Glucokinase overexpression restores glucose utilization and storage in cultured hepatocytes from male Zucker diabetic fatty rats. Seoane, J., Barberà, A., Télémaque-Potts, S., Newgard, C.B., Guinovart, J.J. J. Biol. Chem. (1999) [Pubmed]
  20. Site-directed mutants of rat testis fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase: localization of conformational alterations induced by ligand binding. Helms, M.K., Hazlett, T.L., Mizuguchi, H., Hasemann, C.A., Uyeda, K., Jameson, D.M. Biochemistry (1998) [Pubmed]
  21. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy. Okar, D.A., Live, D.H., Devany, M.H., Lange, A.J. Biochemistry (2000) [Pubmed]
  22. Cyclic AMP, fructose-2,6-bisphosphate and catabolite inactivation of enzymes in the hydrocarbon-assimilating yeast Candida maltosa. Polnisch, E., Hofmann, K. Arch. Microbiol. (1989) [Pubmed]
  23. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae. Caubet, R., Guerin, B., Guerin, M. Arch. Microbiol. (1988) [Pubmed]
  24. Cloning and chromosomal characterization of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 gene (PFKFB3, iPFK2). Mahlknecht, U., Chesney, J., Hoelzer, D., Bucala, R. Int. J. Oncol. (2003) [Pubmed]
  25. Temporal organization of the phosphofructokinase/fructose-1,6-biphosphatase cycle. Hofmann, E., Eschrich, K., Schellenberger, W. Adv. Enzyme Regul. (1985) [Pubmed]
  26. Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Müller, S., Zimmermann, F.K., Boles, E. Microbiology (Reading, Engl.) (1997) [Pubmed]
  27. Yeast fructose-2,6-bisphosphate 6-phosphatase is encoded by PHO8, the gene for nonspecific repressible alkaline phosphatase. Plankert, U., Purwin, C., Holzer, H. Eur. J. Biochem. (1991) [Pubmed]
 
WikiGenes - Universities