The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

cDNA cloning and differential gene expression of three catalases in pumpkin.

Three cDNA clones (cat1, cat2, cat3) for catalase (EC 1.11.1.6) were isolated from a cDNA library of pumpkin (Cucurbita sp.) cotyledons. In northern blotting using the cDNA-specific probe, the cat1 mRNA levels were high in seeds and early seedlings of pumpkin. The expression pattern of cat1 was similar to that of malate synthase, a characteristic enzyme of glyoxysomes. These data suggest that cat1 might encode a catalase associated with glyoxysomal functions. Furthermore, immunocytochemical analysis using cat1-specific anti-peptide antibody directly showed that cat1 encoding catalase is located in glyoxysomes. The cat2 mRNA was present at high levels in green cotyledons, mature leaf, stem and green hypocotyl of light-grown pumpkin plant, and correlated with chlorophyll content in the tissues. The tissue-specific expression of cat2 had a strong resemblance to that of glycolate oxidase, a characteristic enzyme of leaf peroxisomes. During germination of pumpkin seeds, cat2 mRNA levels increased in response to light, although the increase in cat2 mRNA by light was less than that of glycolate oxidase. cat3 mRNA was abundant in green cotyledons, etiolated cotyledons, green hypocotyl and root, but not in young leaf. cat3 mRNA expression was not dependent on light, but was constitutive in mature tissues. Interestingly, cat1 mRNA levels increased during senescence of pumpkin cotyledons, whereas cat2 and cat3 mRNAs disappeared during senescence, suggesting that cat1 encoding catalase may be involved in the senescence process. Thus, in pumpkin, three catalase genes are differentially regulated and may exhibit different functions.[1]

References

  1. cDNA cloning and differential gene expression of three catalases in pumpkin. Esaka, M., Yamada, N., Kitabayashi, M., Setoguchi, Y., Tsugeki, R., Kondo, M., Nishimura, M. Plant Mol. Biol. (1997) [Pubmed]
 
WikiGenes - Universities