The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

HAO1  -  hydroxyacid oxidase (glycolate oxidase) 1

Homo sapiens

Synonyms: GOX, GOX1, Glycolate oxidase, HAOX1, Hydroxyacid oxidase 1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of HAO1


Psychiatry related information on HAO1

  • The response time was approximately 1.3 min, the detection limit of glucose was 25 micro M, and the apparent Michaelis-Menten constant was relative low ( K(m)=1.1+/-0.1 mM) in comparison with that for GOX in solution [5].

High impact information on HAO1


Biological context of HAO1


Anatomical context of HAO1

  • Finally, pretreatment of the isolated glyoxysomes with protease virtually abolished subsequent import of GLO [13].
  • RESULTS: GOX is rapidly cleared from the blood stream and almost exclusively localizes to Kupffer cells [14].
  • Characteristic hydrophilic domains observed in the C-terminal regions of most microbody proteins were found in the deduced sequence of glycolate oxidase by hydropathy analysis [15].
  • Both were capable of ATP-dependent import, whereas a fusion protein consisting of the cytosolic protein dihydrofolate reductase linked to the last 20 amino acids of glycolate oxidase bound to glyoxysomes but did not enter the organelle [16].
  • Among the C4 subtypes, glycolate oxidase activities were significantly smaller in the NADP-malic enzyme grasses with low granal index in the BS chloroplasts, compared with in the C4 grasses with substantial grana in the BS chloroplasts [17].

Associations of HAO1 with chemical compounds

  • It contains the [4Fe-4S] and covalently bound FMN cofactors separated by about 4 A. The folding topology of the large domain and orientation of the FMN cofactor are very similar to those found in glycolate oxidase [18].
  • The overall fold of DH(cdh) is p-hydroxybenzoate hydroxylase-like and is similar to, but also different from, that of GOX and COX [19].
  • Isocitrate lyase, a glyoxysomal protein, and the leaf-type peroxisomal enzyme glycolate oxidase (GLO) were transported into pumpkin (Cucurbita pepo) glyoxysomes with no apparent differences in efficiency of import [13].
  • With operational and storage stabilities over 3 weeks, the glucose biosensor prepared using optimal GOX concentration (10 mg/mL) exhibited a picoamperometric current response within approximately 2 s and a detection limit of 20 microM with excellent reproducibility [20].
  • GOX maintained its ability to generate H(2)O(2) over 24h [14].

Regulatory relationships of HAO1


Other interactions of HAO1


Analytical, diagnostic and therapeutic context of HAO1


  1. Characterization of intermediates in the process of plant peroxisomal protein import. Pool, M.R., López-Huertas, E., Baker, A. EMBO J. (1998) [Pubmed]
  2. F2-isoprostane generation in isolated ferret lungs after oxidant injury or ventilated ischemia. Becker, P.M., Sanders, S.P., Price, P., Christman, B.W. Free Radic. Biol. Med. (1998) [Pubmed]
  3. Potential mechanisms of marked hyperoxaluria not due to primary hyperoxaluria I or II. Monico, C.G., Persson, M., Ford, G.C., Rumsby, G., Milliner, D.S. Kidney Int. (2002) [Pubmed]
  4. Interaction of L-glutamate oxidase with triazine dyes: selection of ligands for affinity chromatography. Katsos, N.E., Labrou, N.E., Clonis, Y.D. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2004) [Pubmed]
  5. Properties of glucose biosensors based on dendrimer layers. Effect of enzyme immobilization. Svobodová, L., Snejdárková, M., Hianik, T. Analytical and bioanalytical chemistry. (2002) [Pubmed]
  6. Biochemical dissection of photorespiration. Douce, R., Neuburger, M. Curr. Opin. Plant Biol. (1999) [Pubmed]
  7. Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases. Jones, J.M., Morrell, J.C., Gould, S.J. J. Biol. Chem. (2000) [Pubmed]
  8. The active site of spinach glycolate oxidase. Lindqvist, Y., Brändén, C.I. J. Biol. Chem. (1989) [Pubmed]
  9. Identification and expression of a cDNA for human glycolate oxidase. Williams, E., Cregeen, D., Rumsby, G. Biochim. Biophys. Acta (2000) [Pubmed]
  10. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme. Maeda-Yorita, K., Aki, K., Sagai, H., Misaki, H., Massey, V. Biochimie (1995) [Pubmed]
  11. The primary structure of spinach glycolate oxidase deduced from the DNA sequence of a cDNA clone. Volokita, M., Somerville, C.R. J. Biol. Chem. (1987) [Pubmed]
  12. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase. Stenberg, K., Clausen, T., Lindqvist, Y., Macheroux, P. Eur. J. Biochem. (1995) [Pubmed]
  13. Protein transport into higher plant peroxisomes. In vitro import assay provides evidence for receptor involvement. Brickner, D.G., Harada, J.J., Olsen, L.J. Plant Physiol. (1997) [Pubmed]
  14. Liver-homing of purified glucose oxidase: A novel in vivo model of physiological hepatic oxidative stress (H(2)O(2)). Rost, D., Welker, A., Welker, J., Millonig, G., Berger, I., Autschbach, F., Schuppan, D., Mueller, S. J. Hepatol. (2007) [Pubmed]
  15. Cloning and sequencing of cDNA for glycolate oxidase from pumpkin cotyledons and northern blot analysis. Tsugeki, R., Hara-Nishimura, I., Mori, H., Nishimura, M. Plant Cell Physiol. (1993) [Pubmed]
  16. Investigation of the energy requirement and targeting signal for the import of glycolate oxidase into glyoxysomes. Horng, J.T., Behari, R., Burke, L.E., Baker, A. Eur. J. Biochem. (1995) [Pubmed]
  17. Variation in the activity of some enzymes of photorespiratory metabolism in C4 grasses. Ueno, O., Yoshimura, Y., Sentoku, N. Ann. Bot. (2005) [Pubmed]
  18. Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4-A resolution. Lim, L.W., Shamala, N., Mathews, F.S., Steenkamp, D.J., Hamlin, R., Xuong, N.H. J. Biol. Chem. (1986) [Pubmed]
  19. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. Hallberg, B.M., Henriksson, G., Pettersson, G., Divne, C. J. Mol. Biol. (2002) [Pubmed]
  20. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Hrapovic, S., Luong, J.H. Anal. Chem. (2003) [Pubmed]
  21. Histochemistry of peroxisomal enzyme activities: a tool in the diagnosis of Zellweger syndrome. Frederiks, W.M., Bosch, K.S., Ankum, M., Wanders, R.J. J. Inherit. Metab. Dis. (1993) [Pubmed]
  22. Photoinactivation and protection of glycolate oxidase in vitro and in leaves. Schäfer, L., Feierabend, J. Z. Naturforsch., C, J. Biosci. (2000) [Pubmed]
  23. Plant peroxisomes respire in the light: Some gaps of the photorespiratory C(2) cycle have become filled-Others remain. Reumann, S., Weber, A.P. Biochim. Biophys. Acta (2006) [Pubmed]
  24. Multiple peroxisomal enzymatic deficiency disorders. A comparative biochemical and morphologic study of Zellweger cerebrohepatorenal syndrome and neonatal adrenoleukodystrophy. Vamecq, J., Draye, J.P., Van Hoof, F., Misson, J.P., Evrard, P., Verellen, G., Eyssen, H.J., Van Eldere, J., Schutgens, R.B., Wanders, R.J. Am. J. Pathol. (1986) [Pubmed]
  25. Backbone makes a significant contribution to the electrostatics of alpha/beta-barrel proteins. Raychaudhuri, S., Younas, F., Karplus, P.A., Faerman, C.H., Ripoll, D.R. Protein Sci. (1997) [Pubmed]
  26. Biogenesis and cytochemistry of unspecialized peroxisomes in root cortical cells of Yucca torreyi L. Kausch, A.P. Eur. J. Cell Biol. (1984) [Pubmed]
  27. Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films. Sirkar, K., Revzin, A., Pishko, M.V. Anal. Chem. (2000) [Pubmed]
  28. Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Lau, W.W., Armbrust, E.V. Environ. Microbiol. (2006) [Pubmed]
  29. Role of tyrosine 129 in the active site of spinach glycolate oxidase. Macheroux, P., Kieweg, V., Massey, V., Söderlind, E., Stenberg, K., Lindqvist, Y. Eur. J. Biochem. (1993) [Pubmed]
WikiGenes - Universities