The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

KATP-channel on the somata of spiny neurones in rat caudate nucleus: regulation by drugs and nucleotides.

1. The aim of the present study was to characterize the pharmacological properties of the adenosine 5'-triphosphate(ATP)-sensitive K+ channel (KATP-channel) on the somata of spiny neurones in rat caudate nucleus and to compare them with those of beta-cells. For that purpose we tested the effects of several KATP-channel-inhibiting and -activating drugs on the opening activity of the KATP-channel in caudate nucleus by use of the patch-clamp technique. In addition, the modulation of drug responses by cytosolic nucleotides was examined. 2. When KATP-channels in caudate nucleus were activated in cell-attached patches by inhibition of mitochondrial energy production, meglitinide (a benzoic acid derivative), Hoe36320 (a sulphonylurea of low lipophilicity) and glipizide reduced KATP-channel activity half-maximally at 0.4 microM, 0.4 microM and about 0.5 nM, respectively. 3. In inside-out patches (presence of 0.7 mM free Mg2+ at the cytoplasmic membrane side), tolbutamide (0.1 mM) caused only partial inhibition of KATP-channels in the absence of cytosolic nucleotides but complete inhibition in the simultaneous presence of the channel-activating nucleotide guanosine 5'-diphosphate (GDP; 1 mM) and the channel-inhibiting nucleotide adenylyl-imidodiphosphate (AMP-PNP; 0.2 mM). 4. Diazoxide (0.3 mM) strongly increased channel activity in the presence of ATP (0.1 mM) or GDP (0.03 mM), but was ineffective in the presence of AMP-PNP (0.1 mM). In the absence of cytosolic nucleotides diazoxide even decreased channel activity. 5. In the presence of 0.1 mM ATP, diazoxide activated KATP-channels half-maximally at 38 microM. 6. When KATP-channel activity was inhibited by 0.1 mM ATP, (-)-pinacidil (0.5 mM) elicited a slight activation of KATP-channels in caudate nucleus, whereas (+)-pinacidil (0.5 mM) and lemakalim (0.3 mM) were ineffective. 7. Since our data indicate similar control by drugs and nucleotides of KATP-channels in the somata of spiny neurones and pancreatic beta-cells, we conclude that the high affinity sulphonylurea receptors of these tissues are probably closely related.[1]

References

 
WikiGenes - Universities