The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Meglitinide     4-[2-[(5-chloro-2-methoxy...

Synonyms: Meglitinido, Meglitinidum, SureCN37926, CCX915, CHEMBL149930, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Meglitinide

 

High impact information on Meglitinide

  • It is suggested that HB 699 decreases K+ permeability of the B-cell membrane, thereby causing a depolarization which leads to activation of voltage-dependent Ca channels and Ca2+ influx, and eventually increases insulin release [3].
  • In contrast, while tolbutamide caused a significant (45 +/- 12%) but short-lived increase in plasma somatostatin concentrations, HB 699 had no significant effect [4].
  • The meglitinide-class drug nateglinide is metabolised by CYP2C9 [5].
  • This effect was not specific for meglitinide, as tolbutamide was also unable to prevent MgADP activation of Kir6.2/SUR128 currents [6].
  • These include insulin lispro, amylin analogues, alpha-glucosidase inhibitors and meglitinide analogues [7].
 

Biological context of Meglitinide

 

Anatomical context of Meglitinide

 

Associations of Meglitinide with other chemical compounds

 

Gene context of Meglitinide

  • Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4 [18].
  • The data favour the idea that meglitinide binding to SUR1 impairs either MgADP binding or the transduction pathway between the NBDs and Kir6.2, and that TMs 8-11 are involved in this modulatory response [6].
  • 2. When added to the intracellular solution, meglitinide and mitiglinide inhibited CFTR Cl- currents with half-maximal concentrations of 164+/-19 microM and 148+/-36 microM, respectively [15].
  • In contrast, sulphonylureas, meglitinide derivatives and thiazolidinediones are extensively metabolised in the liver via the CYP system and thus, may be subject to drug-drug metabolic interactions [19].
  • In inside-out patch-clamp experiments compound II inhibited ATP-sensitive K(+)-channels of the SUR1/K(IR)6.2-type (characteristic of beta-cells) with an IC(50) value of 0.16 microM which is 6-fold lower than the corresponding value for meglitinide [20].
 

Analytical, diagnostic and therapeutic context of Meglitinide

References

  1. Drug-drug and food-drug pharmacokinetic interactions with new insulinotropic agents repaglinide and nateglinide. Scheen, A.J. Clinical pharmacokinetics (2007) [Pubmed]
  2. Stimulation of pancreatic polypeptide secretion in the dog by hypoglycemic agent HB 699. Ribes, G., Trimble, E.R., Wollheim, C.B., Blayac, J.P., Loubatieres-Mariani, M.M. Am. J. Physiol. (1983) [Pubmed]
  3. Mechanism of the stimulation of insulin release in vitro by HB 699, a benzoic acid derivative similar to the non-sulphonylurea moiety of glibenclamide. Garrino, M.G., Schmeer, W., Nenquin, M., Meissner, H.P., Henquin, J.C. Diabetologia (1985) [Pubmed]
  4. Effect of a new hypoglycaemic agent (HB 699) on the in vivo secretion of pancreatic hormones in the dog. Ribes, G., Trimble, E.R., Blayac, J.P., Wollheim, C.B., Puech, R., Loubatières-Mariani, M.M. Diabetologia (1981) [Pubmed]
  5. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Kirchheiner, J., Roots, I., Goldammer, M., Rosenkranz, B., Brockmöller, J. Clinical pharmacokinetics. (2005) [Pubmed]
  6. Analysis of the differential modulation of sulphonylurea block of beta-cell and cardiac ATP-sensitive K+ (K(ATP)) channels by Mg-nucleotides. Reimann, F., Dabrowski, M., Jones, P., Gribble, F.M., Ashcroft, F.M. J. Physiol. (Lond.) (2003) [Pubmed]
  7. Drug therapy of postprandial hyperglycaemia. Mooradian, A.D., Thurman, J.E. Drugs (1999) [Pubmed]
  8. Importance of the hydrophobic energy: structural determination of a hypoglycemic drug of the meglitinide family by nuclear magnetic resonance and molecular modeling. Lins, L., Brasseur, R., Malaisse, W.J., Biesemans, M., Verheyden, P., Willem, R. Biochem. Pharmacol. (1996) [Pubmed]
  9. Stimulation of insulin release by benzoic acid derivatives related to the non-sulphonylurea moiety of glibenclamide: structural requirements and cellular mechanisms. Henquin, J.C., Garrino, M.G., Nenquin, M. Eur. J. Pharmacol. (1987) [Pubmed]
  10. Relationships between the Na(+)/K(+) pump and ATP and ADP content in mouse pancreatic islets: effects of meglitinide and glibenclamide. Elmi, A., Idahl, L.A., Sehlin, J. Br. J. Pharmacol. (2000) [Pubmed]
  11. Glibenclamide and meglitinide block the transport of low molecular weight solutes into malaria-infected erythrocytes. Kirk, K., Horner, H.A., Spillett, D.J., Elford, B.C. FEBS Lett. (1993) [Pubmed]
  12. Mg(2+)-dependent inhibition of KATP by sulphonylureas in CRI-G1 insulin-secreting cells. Lee, K., Ozanne, S.E., Hales, C.N., Ashford, M.L. Br. J. Pharmacol. (1994) [Pubmed]
  13. Comparison of the effect of two different hypoglycemic agents, glibenclamide and HB 699, on the rat small intestinal absorption of sugars and amino acids. Elsenhans, B., Blume, R., Zoltobrocki, M., Caspary, W.F. Biochem. Pharmacol. (1986) [Pubmed]
  14. KATP-channel on the somata of spiny neurones in rat caudate nucleus: regulation by drugs and nucleotides. Schwanstecher, C., Bassen, D. Br. J. Pharmacol. (1997) [Pubmed]
  15. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents. Cai, Z., Lansdell, K.A., Sheppard, D.N. Br. J. Pharmacol. (1999) [Pubmed]
  16. Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Panten, U., Burgfeld, J., Goerke, F., Rennicke, M., Schwanstecher, M., Wallasch, A., Zünkler, B.J., Lenzen, S. Biochem. Pharmacol. (1989) [Pubmed]
  17. Modulation of glycogen phosphorylase activity and fructose 2,6-bisphosphate levels by glibenclamide and meglitinide in isolated rat hepatocytes: a comparative study. López-Alarcón, L., Muñoz-Alonso, M.J., Guijarro, C., Felíu, J.E. Metab. Clin. Exp. (1995) [Pubmed]
  18. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide. Kajosaari, L.I., Jaakkola, T., Neuvonen, P.J., Backman, J.T. Eur. J. Clin. Pharmacol. (2006) [Pubmed]
  19. Drug interactions of clinical importance with antihyperglycaemic agents: an update. Scheen, A.J. Drug safety : an international journal of medical toxicology and drug experience. (2005) [Pubmed]
  20. Inhibition of ATP-sensitive K(+)-channels by a sulfonylurea analogue with a phosphate group. Hastedt, K., Panten, U. Biochem. Pharmacol. (2003) [Pubmed]
  21. Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic beta-cells. Best, L., Benington, S. Br. J. Pharmacol. (1998) [Pubmed]
 
WikiGenes - Universities