The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore.

We have studied the effects of singlet oxygen produced by photodynamic action on the cyclosporin A-sensitive permeability transition (PT) in isolated rat liver mitochondria. Mitochondria were incubated with 3 microM hematoporphyrin and irradiated at 365 nm with a fluence rate of 25 watts/m2. For short durations of irradiation (60 s) the adenine nucleotide translocase was inactivated, but mitochondria retained their ability to form a proton electrochemical gradient and accumulated Ca2+ and Pi at the same rate as non-irradiated controls. Strikingly, however, the oxidative effects of photodynamic action prevented opening of the PT pore which is normally induced by Ca2+ plus Pi or by treatment with diethyl pyrocarbonate (a histidine reagent) or diamide (a thiol oxidant). We show that the most likely targets for photodynamic action are critical histidines that undergo degradation. Irradiated, hematoporphyrin-loaded mitochondria treated with diethyl pyrocarbonate or diamide still undergo the PT when treated with phenylarsine oxide, which reacts with a critical dithiol involved in pore modulation (Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P. (1994) J. Biol. Chem. 269, 16638-16642). These data suggest (i) that the dithiol cysteines are not oxidized by photodynamic action, but rather became inaccessible to oxidants; and (ii) that irradiation of hematoporphyrin-loaded mitochondria does not lead to pore denaturation, but rather to site-selective inactivation of discrete pore functional domains.[1]

References

 
WikiGenes - Universities