The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neurosteroid inhibition of cell death.

Diverse gamma-aminobutyric acid (GABAA) receptor modulators exhibited novel cytoprotective effects and mechanisms of action in rabbit renal proximal tubules subjected to mitochondrial inhibition (antimycin A) or hypoxia. Cytoprotective potencies (50% effective concentration, EC50) were 0.3 nM allopregnanolone (AP) > 0.4 nM 17 alpha-OH-allopregnanolone (17 alpha-OH-AP) > 30 nM dehydroepiandrosterone sulfate (DHEAS) = 30 nM pregnenolone sulfate (PS) > 500 nM pregnenolone (PREG) > 30 microM muscimol > 10 mM GABA following antimycin A exposure. Maximal protection with AP and 17 alpha-OH-AP was 70%, whereas DHEAS, PS, PREG, and muscimol produced 100% cytoprotection. Experiments with AP, PS, and muscimol revealed the return of mitochondrial function and active Na+ transport following hypoxia/reoxygenation. Muscimol inhibited the antimycin A-induced influx of both extracellular Ca2+ and Cl- that occurs during the late phase of cell injury, whereas the neurosteroids only inhibited influx of Cl-. Radioligand binding studies with AP and PS did not reveal a specific binding site; however, structural requirements were observed for cytoprotective potency and efficacy. In conclusion, we suggest that the GABAA receptor modulators muscimol and neurosteroids are cytoprotective at different cellular sites in the late phase of cell injury; muscimol inhibits Ca2+ and subsequent Cl- influx, whereas the neurosteroids inhibit Cl- influx.[1]

References

  1. Neurosteroid inhibition of cell death. Waters, S.L., Miller, G.W., Aleo, M.D., Schnellmann, R.G. Am. J. Physiol. (1997) [Pubmed]
 
WikiGenes - Universities