The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells.

Although stimulation of insulin secretion by glucose is regulated by coupled oscillations of membrane potential and intracellular Ca2+ ([Ca2+]i), the membrane events regulating these oscillations are incompletely understood. In the presence of glucose and tetraethylammonium, transgenically derived beta-cells (betaTC3-neo) exhibit coupled voltage and [Ca2+]i oscillations strikingly similar to those observed in normal islets in response to glucose. Using these cells as a model system, we investigated the membrane conductance underlying these oscillations. Alterations in delayed rectifier or Ca2+-activated K+ channels were excluded as a source of the conductance oscillations, as they are completely blocked by tetraethylammonium. ATP-sensitive K+ channels were also excluded, since the ATP-sensitive K+ channel blocker tolbutamide substituted for glucose in inducing [Ca2+]i oscillations. Thapsigargin, which depletes intracellular Ca2+ stores, and maitotoxin, an activator of nonselective cation channels, both converted the glucose-dependent [Ca2+]i oscillations into a sustained elevation. On the other hand, both SKF 96365, a blocker of Ca2+ store-operated channels, and external Na+ removal suppressed the glucose-stimulated [Ca2+]i oscillations. Maitotoxin activated a nonselective cation current in betaTC3 cells that was attenuated by removal of extracellular Na+ and by SKF 96365, in the same manner to a current activated in mouse beta-cells following depletion of intracellular Ca2+ stores. Currents similar to these are produced by the mammalian trp-related channels, a gene family that includes Ca2+ store-operated channels and inositol 1,4,5-trisphosphate-activated channels. We found several of the trp family genes were expressed in betaTC3 cells by reverse transcriptase polymerase chain reaction using specific primers, but by Northern blot analysis, mtrp-4 was the predominant message expressed. We conclude that a conductance underlying glucose-stimulated oscillations in beta-cells is provided by a Ca2+ store depletion-activated nonselective cation current, which is plausibly encoded by homologs of trp genes.[1]

References

  1. Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. Roe, M.W., Worley, J.F., Qian, F., Tamarina, N., Mittal, A.A., Dralyuk, F., Blair, N.T., Mertz, R.J., Philipson, L.H., Dukes, I.D. J. Biol. Chem. (1998) [Pubmed]
 
WikiGenes - Universities