The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phosphorylation of GTP cyclohydrolase I and modulation of its activity in rodent mast cells. GTP cyclohydrolase I hyperphosphorylation is coupled to high affinity IgE receptor signaling and involves protein kinase C.

GTP cyclohydrolase I controls the de novo pathway for the synthesis of tetrahydrobiopterin, which is the essential cofactor for tryptophan 5-monooxygenase and thus, for serotonin production. In mouse bone marrow-derived mast cells, the kit ligand selectively up-regulates GTP cyclohydrolase I activity (Ziegler, I., Hültner, L. , Egger, D., Kempkes, B., Mailhammer, R., Gillis, S., and Rödl, W. (1993) J. Biol. Chem. 268, 12544-12551). Immunoblot analysis now confirms that this long term enhancement is caused by increased expression of the enzyme. Furthermore we show that GTP cyclohydrolase I is subject to modification at the post-translational level. In vivo labeling with [32P]orthophosphate demonstrates that in primary mast cells and in transfected RBL-2H3 cells overexpressing GTP cyclohydrolase I, the enzyme exists in a phosphorylated form. Antigen binding to the high affinity receptor for IgE triggers an additional and transient phosphorylation of GTP cyclohydrolase I with a concomitant rise in its activity, and in consequence, cellular tetrahydrobiopterin levels increase. These events culminate 8 min after stimulation and can be mimicked by phorbol ester. The hyperphosphorylation is greatly reduced by the protein kinase C inhibitor Ro-31-8220. In vitro phosphorylation studies indicate that GTP cyclohydrolase I is a substrate for both casein kinase II and protein kinase C.[1]

References

 
WikiGenes - Universities