The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Site-specific core 1 O-glycosylation pattern of the porcine submaxillary gland mucin tandem repeat. Evidence for the modulation of glycan length by peptide sequence.

The sequence-specific O-linked core 1 ([R1, R2]-beta-Gal(1-3)-alpha-GalNAc-O-Ser/Thr) glycosylation pattern has been quantitatively determined for 30 of the 31 Ser/Thr residues in the 81-residue porcine submaxillary gland mucin tandem repeat. This was achieved by Edman amino acid sequencing of the isolated tandem repeat after selective removal of non-C3-substituted, peptide-linked GalNAc residues by periodate oxidation and subsequent trimming of the remaining oligosaccharides to peptide-linked GalNAc residues by mild trifluoromethanesulfonic acid/anisole treatment. The sequencing reveals 61% (range, 12-95%) of the peptide alpha-N-acetylgalactosamine (GalNAc) residues to be substituted by core 1 chains, a value in agreement with the carbon-13 NMR analysis of the native mucin. Residues with the lowest C3 substitution were typically clustered in regions of sequence with the highest densities of (glycosylated) serine or threonine. This suggests that the porcine beta3-Gal, core 1, transferase is sensitive to peptide sequence and/or neighboring core GalNAc glycosylation in vivo, in keeping with earlier in vitro enzymatic glycosylation studies (Granovsky, M., Blielfeldt, T., Peters, S., Paulsen, H., Meldal, M., Brockhausen, J., and Brockhausen, I. (1994) Eur. J. Biochem. 221, 1039-1046). These results demonstrate that the O-glycan structures in mucin domains are not necessarily uniformly distributed along the polypeptide core and that their lengths can be modulated by peptide sequence. The data further suggest that hydroxyamino acid spacing may contribute to the regulation of glycan length, thereby, providing a mechanism for maintaining an optimally expanded, protease resistant, mucin conformation.[1]


WikiGenes - Universities