The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Interaction of Bnr1p with a novel Src homology 3 domain-containing Hof1p. Implication in cytokinesis in Saccharomyces cerevisiae.

Proteins containing the formin homology (FH) domains FH1 and FH2 are involved in cytokinesis or establishment of cell polarity in a variety of organisms. We have shown that the FH proteins Bni1p and Bnr1p are potential targets of the Rho family small GTP- binding proteins and bind to an actin-binding protein, profilin, at their proline-rich FH1 domains to regulate reorganization of the actin cytoskeleton in the yeast Saccharomyces cerevisiae. We found here that a novel Src homology 3 (SH3) domain-containing protein, encoded by YMR032w, interacted with Bnr1p in a GTP-Rho4p-dependent manner through the FH1 domain of Bnr1p and the SH3 domain of Ymr032wp. Ymr032wp weakly bound to Bni1p. Ymr032wp was homologous to cdc15p, which is involved in cytokinesis in Schizosaccharomyces pombe, and we named this gene HOF1 (homolog of cdc 15). Both Bnr1p and Hof1p were localized at the bud neck, and both the bnr1 and hof1 mutations showed synthetic lethal interactions with the bni1 mutation. The hof1 mutant cells showed phenotypes similar to those of the septin mutants, indicating that HOF1 is involved in cytokinesis. These results indicate that Bnr1p directly interacts with Hof1p as well as with profilin to regulate cytoskeletal functions in S. cerevisiae.[1]

References

  1. Interaction of Bnr1p with a novel Src homology 3 domain-containing Hof1p. Implication in cytokinesis in Saccharomyces cerevisiae. Kamei, T., Tanaka, K., Hihara, T., Umikawa, M., Imamura, H., Kikyo, M., Ozaki, K., Takai, Y. J. Biol. Chem. (1998) [Pubmed]
 
WikiGenes - Universities