The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Receptors for the 5-oxo class of eicosanoids in neutrophils.

5-Hydroxy- and 5-oxo-eicosatetraenoate (5-HETE and 5-oxoETE) activate polymorphonuclear neutrophils (PMNs) through a common, receptor-like recognition system. To define this system, we examined the interaction of these eicosanoids with human PMNs. PMNs esterified 5-[3H]HETE to glycerolipids at 37 and 4 degreesC. At 37 but not 4 degreesC, the cells also hydroxylated the label to 5, 20-[3H]diHETE. The acyl:CoA synthetase blocker, triacsin C, inhibited esterification but also led to an increase in the hydroxylation of the label. PMNs processed 5-[3H]oxoETE through the same pathways but only or principally after reducing it to 5-[3H]HETE (37 or 4 degreesC). In the presence of these varying metabolic reactions, PMNs (37 or 4 degreesC; +/- triacsin C) could not be shown to receptor bind either radiolabel. Plasma membranes isolated from PMNs esterified but unlike whole cells did not reduce or hydroxylate 5-[3H]oxoETE. Triacsin C blocked esterification, thereby rendering the membranes unable to metabolize this radiolabel. Indeed, triacsin C-treated membranes bound (Kd = 3.8 nM) 5-[3H]oxoETE specifically and reversibly to 86 pmol of sites per 25 micrograms of membrane protein. 5-OxoETE, 5-HETE, and 5,15-diHETE displaced this binding at concentrations correlating with their potency in eliciting PMN Ca2+ transients. GTP and GTPgammaS, but not ATP or ATPgammaS, also reduced 5-[3H]oxoETE binding, whereas 15-HETE, leukotriene B4, platelet-activating factor, IL-8, C5a, and N-formyl-Met-Leu-Phe lacked this effect. We conclude that PMNs and their plasma membranes use an acyl:CoA synthetase-dependent route to esterify 5-HETE and 5-oxoETE into lipids. Blockade of the synthetase uncovers cryptic plasmalemma sites that bind 5-oxoETE with exquisite specificity. These sites apparently mediate responses to the 5-oxo class of eicosanoids and are likely members of the serpentine superfamily of G protein-linked receptors.[1]

References

  1. Receptors for the 5-oxo class of eicosanoids in neutrophils. O'Flaherty, J.T., Taylor, J.S., Thomas, M.J. J. Biol. Chem. (1998) [Pubmed]
 
WikiGenes - Universities