The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In vitro inhibition of hepadnavirus polymerases by the triphosphates of BMS-200475 and lobucavir.

The guanosine analogs BMS-200475 and lobucavir have previously been shown to effectively suppress propagation of the human hepatitis B virus (HBV) and woodchuck hepatitis virus (WHV) in 2.2.15 liver cells and in the woodchuck animal model system, respectively. This repression was presumed to occur via inhibition of the viral polymerase ( Pol) by the triphosphate (TP) forms of BMS-200475 and lobucavir which are both produced in mammalian cells. To determine the exact mode of action, BMS-200475-TP and lobucavir-TP, along with several other guanosine analog-TPs and lamivudine-TP were tested against the HBV, WHV, and duck hepatitis B virus (DHBV) polymerases in vitro. Estimates of the 50% inhibitory concentrations revealed that BMS-200475-TP and lobucavir-TP inhibited HBV, WHV, and DHBV Pol comparably and were superior to the other nucleoside-TPs tested. More importantly, both analogs blocked the three distinct phases of hepadnaviral replication: priming, reverse transcription, and DNA-dependent DNA synthesis. These data suggest that the modest potency of lobucavir in 2.2.15 cells may be the result of poor phosphorylation in vivo. Kinetic studies revealed that BMS-200475-TP and lobucavir-TP competitively inhibit HBV Pol and WHV Pol with respect to the natural dGTP substrate and that both drugs appear to bind to Pol with very high affinities. Endogenous sequencing reactions conducted in replicative HBV nucleocapsids suggested that BMS-200475-TP and lobucavir-TP are nonobligate chain terminators that stall Pol at sites that are distinct yet characteristically two to three residues downstream from dG incorporation sites.[1]


  1. In vitro inhibition of hepadnavirus polymerases by the triphosphates of BMS-200475 and lobucavir. Seifer, M., Hamatake, R.K., Colonno, R.J., Standring, D.N. Antimicrob. Agents Chemother. (1998) [Pubmed]
WikiGenes - Universities