The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Disordered expression of the sucrase-isomaltase complex in the small intestine in Otsuka Long-Evans tokushima fatty rats, a model of non-insulin-dependent diabetes mellitus with insulin resistance.

To clarify the relationship between diabetes mellitus and carbohydrate digestion, the activities of sucrase and isomaltase, which form a complex enzyme (SI complex) on the brush border membranes, were compared in the progression of diabetes mellitus in Otsuka Long-Evans Tokushima fatty (OLETF) rats, a model of human non-insulin-dependent diabetes mellitus with insulin resistance, and Long-Evans Tokushima Otsuka (LETO) rats as non-diabetic controls. Until 40 weeks of age, OLETF rats were obese and had a high plasma glucose level, compared to age-matched LETO rats, but the sucrase and isomaltase activities showed no significant differences between the two strains. Oral glucose tolerance test revealed that during 40-48 weeks of age, NIDDM became very severe with advancing insulin resistance in OLETF rats. In OLETF rats, in contrast to LETO rats, at 48 weeks of age, abnormal increases in the sucrase and isomaltase activities occurred, along with a remarkable decrease in body weight and a further great increase in the plasma glucose level in the non-fasting state. Hyperinsulinemia occurred in 20-week-old OLETF rats; however, at 40 and 48 weeks of age, the plasma insulin level in the non-fasting state in OLETF rats was not significantly different from that in LETO rats. The level of mRNA encoding the SI complex increased abnormally in 48-week-old OLETF rats. These results suggest that the advance of insulin resistance leads to an increase in the expression of the SI complex on the transcriptional level.[1]

References

  1. Disordered expression of the sucrase-isomaltase complex in the small intestine in Otsuka Long-Evans tokushima fatty rats, a model of non-insulin-dependent diabetes mellitus with insulin resistance. Adachi, T., Takenoshita, M., Katsura, H., Yasuda, K., Tsuda, K., Seino, Y., Enomoto, T., Yamaji, R., Miyatake, K., Inui, H., Nakano, Y. Biochim. Biophys. Acta (1999) [Pubmed]
 
WikiGenes - Universities