The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Reinforcement Schedule

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Psychiatry related information on Reinforcement Schedule


High impact information on Reinforcement Schedule


Chemical compound and disease context of Reinforcement Schedule

  • In a second experiment, similar combinations of ethanol and amphetamine were administered to rats lever-pressing for food pellets under a fixed-interval reinforcement schedule [7].
  • Response-contingent infusions of cocaine (at unit doses of 0.15, 0.30 and 0.60 mg/kg/infusion) and d-amphetamine (at unit doses of 0.05 and 0.10 mg/kg/infusion) were available during daily 4-h sessions on a FR1 reinforcement schedule [8].
  • Response decrements in an operant task produced by either extinction or by the dopamine receptor blocker pimozide were examined in three experiments which employed intermittent reinforcement schedules [9].
  • In mice trained to lever press under a fixed-ratio (FR) 20 reinforcement schedule, NPC 17742 was 6.2 times more potent than NPC 12626 and equipotent with the competitive NMDA antagonist [E]-2-amino-4-methyl-5-phosphono-3-penteneoic acid (CGP 37849) in reducing rates of responding [10].
  • The results are discussed in relation to the hypothesis that the neurochemical pathways by which reinforcement schedules modify behaviour include a step influenced by benzodiazepine receptors [11].

Biological context of Reinforcement Schedule


Gene context of Reinforcement Schedule


  1. Ethanol as a reinforcer for rats: effects of concurrent access to water and alternate positions of water and ethanol. Meisch, R.A., Beardsley, P. Psychopharmacologia. (1975) [Pubmed]
  2. Food deprivation increases oral and intravenous drug intake in rats. Carroll, M.E., France, C.P., Meisch, R.A. Science (1979) [Pubmed]
  3. Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. Chang, J.Y., Sawyer, S.F., Lee, R.S., Woodward, D.J. J. Neurosci. (1994) [Pubmed]
  4. Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Soria, G., Mendizábal, V., Touriño, C., Robledo, P., Ledent, C., Parmentier, M., Maldonado, R., Valverde, O. Neuropsychopharmacology (2005) [Pubmed]
  5. Effect of methamphetamine self-administration on tyrosine hydroxylase and dopamine transporter levels in mesolimbic and nigrostriatal dopamine pathways of the rat. Shepard, J.D., Chuang, D.T., Shaham, Y., Morales, M. Psychopharmacology (Berl.) (2006) [Pubmed]
  6. Naloxone effects on sucrose-motivated behavior. Cleary, J., Weldon, D.T., O'Hare, E., Billington, C., Levine, A.S. Psychopharmacology (Berl.) (1996) [Pubmed]
  7. Ethanol-amphetamine interaction effects on spontaneous motor activity and fixed-interval responding. Duncan, P.M., Cook, N.J. Psychopharmacology (Berl.) (1981) [Pubmed]
  8. Intravenous self-administration of cocaine and norcocaine by dogs. Risner, M.E., Jones, B.E. Psychopharmacology (Berl.) (1980) [Pubmed]
  9. Extinction and dopamine receptor blockade after intermittent reinforcement training: failure to observe functional equivalence. Tombaugh, T.N., Anisman, H., Tombaugh, J. Psychopharmacology (Berl.) (1980) [Pubmed]
  10. Behavioral pharmacology of NPC 17742, a competitive N-methyl-D-aspartate (NMDA) antagonist. Willetts, J., Clissold, D.B., Hartman, T.L., Brandsgaard, R.R., Hamilton, G.S., Ferkany, J.W. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  11. Effects of RO 15-1788 on a running response rewarded on continuous or partial reinforcement schedules. Hawkins, M., Sinden, J., Martin, I., Gray, J.A. Psychopharmacology (Berl.) (1988) [Pubmed]
  12. Fixed-ratio schedules of oral ethanol self-administration in inbred mouse strains. Elmer, G.I., Meisch, R.A., Goldberg, S.R., George, F.R. Psychopharmacology (Berl.) (1988) [Pubmed]
  13. Prenatal ethanol effects on reward efficacy for adult mice are gestation stage specific. Middaugh, L.D., Gentry, G.D. Neurotoxicology and teratology. (1992) [Pubmed]
  14. Long-term retention of classical eyeblink conditioning in amnesia. Schugens, M.M., Daum, I. Neuroreport (1999) [Pubmed]
  15. Effect of reinforcement on facial responsivity and persistence in children with attention-deficit hyperactivity disorder. Wigal, T., Swanson, J.M., Douglas, V.I., Wigal, S.B., Wippler, C.M., Cavoto, K.F. Behavior modification. (1998) [Pubmed]
  16. Effects of neuropeptide Y, insulin, 2-deoxyglucose, and food deprivation on food-motivated behavior. Jewett, D.C., Cleary, J., Levine, A.S., Schaal, D.W., Thompson, T. Psychopharmacology (Berl.) (1995) [Pubmed]
  17. The effects of scopolamine on extinction and spontaneous recovery. Morley, B.J., Russin, R. Psychopharmacology (Berl.) (1978) [Pubmed]
  18. Effect of runway training on rat brain tyrosine hydroxylase: differential effect of continuous and partial reinforcement schedules. Boarder, M.R., Feldon, J., Gray, J.A., Fillenz, M. Neurosci. Lett. (1979) [Pubmed]
  19. Motivational influences underlying prolactin-induced feeding in doves (Streptopelia risoria). Gamoke, C.A., Moore, J.C., Buntin, J.D. Behav. Neurosci. (2000) [Pubmed]
WikiGenes - Universities