The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular dissection of nucleolin's role in growth and cell proliferation: new insights.

Cells require optimum protein synthetic activity in order to support cell proliferation, maintain homeostatic and metabolic integrity, and repair damage. Since growth depends on protein synthesis through ribosome biogenesis, the control of biosynthesis of ribosomes is necessarily a key element for control of growth. Nucleolin is a major nucleolar protein of exponentially growing eukaryotic cells, which is directly involved in the regulation of ribosome biogenesis and maturation. The highly conserved nucleolin contains three major domains through which it controls the organization of nucleolar chromatin, packaging of pre-RNA, rDNA transcription, and ribosome assembly. Numerous reports have implicated the involvement of nucleolin either directly or indirectly in the regulation of cell proliferation and growth, cytokinesis, replication, embryogenesis, and nucleogenesis. Nucleolin, an RNA binding protein, is also an autoantigen, a transcriptional repressor, and a switch region targeting factor. In addition, nucleolin exhibits autodegradation, DNA and RNA helicase activities, and DNA-dependent ATPase activity. An interesting aspect of nucleolin action is that it is a target for regulation by proteolysis, methylation, ADP-ribosylation, and phosphorylation by CKII, cdc2, PKC-xi, cyclic AMP-dependent protein kinase, and ecto-protein kinase. For these and other reasons, nucleolin is fundamental to the survival and proliferation of cells. Considerable progress has been made in recent years with the identification of new nucleolin binding proteins that may mediate these many nucleolin-dependent functions. Nucleolin also functions as a cell surface receptor, where it acts as a shuttling protein between cytoplasm and nucleus, and thus can even provide a mechanism for extracellular regulation of nuclear events. Exploration of the regulation of this multifaceted protein in a remarkable number of diverse functions is challenging.[1]


WikiGenes - Universities