The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The nicotinic acetylcholine receptor agonist (+/-)-epibatidine increases FGF-2 mRNA and protein levels in the rat brain.

In a previous work, we showed that acute intermittent nicotine treatment up-regulates the level of fibroblast growth factor-2 (FGF-2) mRNA in brain regions of tel- and mesencephalon of rats suggesting that neuroprotective effect of (-)nicotine may, at least in part, involve an activation of the neuronal FGF-2 signalling. The present experiments were designed to extend the study on the nicotinic receptor mediated up-regulation of FGF-2 mRNA levels to the use of the potent nicotinic acetylcholine receptor (nAChR) agonist (+/-)-epibatidine. The (+/-)-epibatidine treatment led to a strong and long lasting up-regulation of FGF-2 mRNA expression in the cerebral cortex, in the hippocampal formation, in the striatum and in the substantia nigra. This FGF-2 mRNA induction, already statistically significant at 4 h, peaked at 12 h from treatment and was only partially returned towards normal levels at 48 h, the last time point examined. Using Western blot analysis it was found that the epibatidine-induced upregulation of FGF-mRNA is accompaned by an increase of FGF-2 protein level at the 20-h time-interval. These (+/-)-epibatidine effects on FGF-2 expression were antagonized by the non-competitive nAChR antagonist mecamylamine, indicating an involvement of nicotinic receptors. In the same brain areas examined, no changes were observed in the fibroblast growth factor receptor-1 (FGFR-1) mRNA levels, in brain-derived neurotrophic factor (BDNF) and in glial cell line-derived neurotrophic factor (GDNF) mRNA levels. In view of the neurotrophic function of FGF-2, these results, together with previous ones, could further help to understand the molecular mechanisms mediating the previously observed neuroprotective effects of (-)nicotine.[1]


  1. The nicotinic acetylcholine receptor agonist (+/-)-epibatidine increases FGF-2 mRNA and protein levels in the rat brain. Belluardo, N., Mudò, G., Blum, M., Cheng, Q., Caniglia, G., Dell'Albani, P., Fuxe, K. Brain Res. Mol. Brain Res. (1999) [Pubmed]
WikiGenes - Universities