The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of the amino acid 45 residue in reduced folate carrier function and ion-dependent transport as characterized by site-directed mutagenesis.

In previous reports, an E45K mutation in reduced folate carrier (RFC1) resulted in marked substrate-specific changes in folate binding and the induction of an obligatory inorganic anion requirement for carrier function. In this study, site-directed mutagenesis was employed to further characterize the role of glutamate-45 in carrier function by replacement with glutamine, arginine, aspartate, leucine, or tryptophan followed by tranfection of the mutated cDNAs into the MTX(r)A line, which lacks a functional endogenous carrier. Alterations in transport function with amino acid substitutions at this residue were not charge related. Hence, E45Q, E45R, and E45K all 1) increased carrier affinity for 5-formyltetrahydrofolate approximately 4-fold, 2) increased affinity for folic acid approximately 6- to 10-fold, 3) did not change affinity for 5-methyltetrahydrofolate, and 4) except for E45R decreased affinity for methotrexate (2- to 3-fold). In contrast, mutations E45D, E45L, and E45W generally reduced affinity for all these folates except for folic acid. Finally, chloride-dependent influx was only noted in the E45R mutant. These data further substantiate the important role that glutamate-45 plays in the selectivity of binding of folates to RFC1 and establish that it is the addition of a positive charge at this site and not the loss of a negative charge that results in the induced anion dependence. These and other studies indicate that mutations in the first transmembrane domain can have a markedly selective impact on the affinity of RFC1 for folate compounds and in particularly a highly salutary effect on binding of the oxidized folate, folic acid.[1]

References

 
WikiGenes - Universities