The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons.

Disruption of intracellular calcium homeostasis is thought to play a role in neurodegenerative disorders such as Huntington's disease ( HD). To study different aspects of putative pathogenic mechanisms in HD, we aimed to establish an in vitro model of calcium-induced toxicity in striatal neurons. The calcium ionophore A23187 induced a concentration- and time-dependent cell death in cultures of embryonic striatal neurons, causing both apoptosis and necrosis. Cell death was significantly reduced by the cell-permeant antioxidant manganese(III)tetrakis(4-benzoic acid) porphyrin (MnTBAP). Cyclosporin A and its analogue N-MeVal-4-cyclosporin also reduced the incidence of cell death, suggesting the participation of mitochondrial permeability transition in this process. Furthermore, addition of either of two types of caspase inhibitors, Ac-YVAD-CHO (acetyl-Tyr-Val-Ala-Asp-aldehyde) and Ac-DEVD-CHO (acetyl-Asp-Glu-Val-Asp-aldehyde), to the striatal cells blocked A23187-induced striatal cell death in a concentration-dependent manner. These results suggest that oxidative stress, opening of the mitochondrial permeability transition pore and activation of caspases are important steps in A23187-induced cell death.[1]

References

 
WikiGenes - Universities