Identification and characterisation of transcript and protein of a new short N-terminal utrophin isoform.
Dystrophin and utrophin are known to link the intracellular cytoskeleton to the extracellular matrix via a transmembraneous glycoprotein complex. Four short C-terminal isoforms (Dp71, Dp116, Dp140, and Dp260) are described for dystrophin and three for utrophin (Up71, Up113, and Up140). We describe here for the first time the existence of a 3.7-kb transcript and a 62-kDa protein in C6 glioma cells representing a short N-terminal isoform unique for utrophin (N-utrophin). More than 20 clones covering the entire coding region of utrophin were isolated from a rat C6 glioma cell cDNA library. Two clones were found to code for a protein with 539 amino acids. Its sequence is identical to that of the full-length utrophin, except for the last residue where Cys is replaced by Val. This isoform contains the actin binding domain (consisting of two calponin homology subdomains), followed by two spectrin-like repeats. A recombinant fragment corresponding to N-utrophin binds to F-actin in vitro with an equilibrium constant (affinity) K of 4.5 x 10(5) M(-1) and a stoichiometry of one fragment per around five actin monomers. Immunocytochemical staining of C6 glioma cells with antisera specific for different utrophin regions localised full-length utrophin in the submembraneous cortical actin layer as revealed by confocal microscopy. A distinct staining pattern for the N-utrophin was not detectable, although it was expected to localise at the actin stress fibers. It is assumed that it co-localises via the two spectrin-like repeats with the full-length utrophin at the cell membrane.[1]References
- Identification and characterisation of transcript and protein of a new short N-terminal utrophin isoform. Zuellig, R.A., Bornhauser, B.C., Knuesel, I., Heller, F., Fritschy, J.M., Schaub, M.C. J. Cell. Biochem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg