The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Progesterone modulation of osteopontin gene expression in the ovine uterus.

Osteopontin (OPN) is an acidic phosphorylated glycoprotein component of the extracellular matrix that binds to integrins at the cell surface to promote cell-cell attachment and cell spreading. This matrix constituent is a ligand that could potentially bind integrins on trophectoderm and endometrium to facilitate superficial implantation and placentation. OPN mRNA increases in the endometrial glandular epithelium (GE) of early-pregnant ewes, and OPN protein is secreted into the uterine lumen. Therefore, progesterone and/or interferon-tau (IFNtau) may regulate OPN expression in the uterine GE. Cyclic ewes were ovariectomized and fitted with intrauterine (i. u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 136.317 (ZK; progesterone receptor [ PR] antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. Progesterone induced the expression of endometrial OPN mRNA in the GE and increased secretion of a 45-kDa OPN protein from endometrial explants maintained in culture for 24 h. Administration of ZK ablated progesterone effects. Intrauterine infusion of roIFNtau did not affect OPN gene expression or secretion in any of the steroid treatments. Interestingly, OPN mRNA-positive GE cells lacked detectable PR expression, although PR were detected in the stroma. Results indicate that progesterone regulates OPN expression in GE through a complex mechanism that includes PR down-regulation, and we suggest the possible involvement of a progesterone-induced stromal cell-derived growth factor(s) that acts as a progestamedin.[1]


  1. Progesterone modulation of osteopontin gene expression in the ovine uterus. Johnson, G.A., Spencer, T.E., Burghardt, R.C., Taylor, K.M., Gray, C.A., Bazer, F.W. Biol. Reprod. (2000) [Pubmed]
WikiGenes - Universities