The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Placentation


High impact information on Placentation


Chemical compound and disease context of Placentation


Biological context of Placentation


Anatomical context of Placentation


Associations of Placentation with chemical compounds

  • These findings indicate that CSF-1, under hormonal influence, plays a role in placental development and function and that steroid hormones may regulate developmental processes via their effects on the expression of tissue-specific growth factors [8].
  • This result suggests that the variation in placentation has a significant effect on within-pair variation in serum cholesterol of newborn MZ twins [22].
  • Placental development initially occurs in a low-oxygen (O2) or hypoxic environment [23].
  • If receptor expression is similarly genetically determined in the placenta, responsiveness to angiotensin II may be affected, with the potential to influence placentation or placental prostaglandin secretion [24].
  • In order to investigate the possible role of retinoic acid (RA) in placentation, we analyzed the effects of exogenous RA on TS cells in vitro and the developing ectoplacental cone in vivo [25].

Gene context of Placentation


Analytical, diagnostic and therapeutic context of Placentation


  1. Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Li, Y., Behringer, R.R. Nat. Genet. (1998) [Pubmed]
  2. Altered placental development and intrauterine growth restriction in IGF binding protein-1 transgenic mice. Crossey, P.A., Pillai, C.C., Miell, J.P. J. Clin. Invest. (2002) [Pubmed]
  3. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. Hodivala-Dilke, K.M., McHugh, K.P., Tsakiris, D.A., Rayburn, H., Crowley, D., Ullman-Culleré, M., Ross, F.P., Coller, B.S., Teitelbaum, S., Hynes, R.O. J. Clin. Invest. (1999) [Pubmed]
  4. Ontogeny of hepatocyte growth factor (HGF) and its receptor (c-met) in human placenta: reduced HGF expression in intrauterine growth restriction. Somerset, D.A., Li, X.F., Afford, S., Strain, A.J., Ahmed, A., Sangha, R.K., Whittle, M.J., Kilby, M.D. Am. J. Pathol. (1998) [Pubmed]
  5. Expression of placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in human normal and malignant invasive trophoblastic cells. Ino, K., Kikkawa, F., Suzuki, T., Kajiyama, H., Shibata, K., Nomura, S., Itakura, A., Ito, M., Nagasaka, T., Hattori, A., Tsujimoto, M., Mizutani, S. Lab. Invest. (2003) [Pubmed]
  6. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Riley, P., Anson-Cartwright, L., Cross, J.C. Nat. Genet. (1998) [Pubmed]
  7. Establishment of functional imprinting of the H19 gene in human developing placentae. Jinno, Y., Ikeda, Y., Yun, K., Maw, M., Masuzaki, H., Fukuda, H., Inuzuka, K., Fujishita, A., Ohtani, Y., Okimoto, T. Nat. Genet. (1995) [Pubmed]
  8. Apparent role of the macrophage growth factor, CSF-1, in placental development. Pollard, J.W., Bartocci, A., Arceci, R., Orlofsky, A., Ladner, M.B., Stanley, E.R. Nature (1987) [Pubmed]
  9. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Gurtner, G.C., Davis, V., Li, H., McCoy, M.J., Sharpe, A., Cybulsky, M.I. Genes Dev. (1995) [Pubmed]
  10. Cerebral tissue oxygenation during hypoxia and hyperoxia using artificial placentation in lamb. Schmidt, S., Sierra, F., Fahnenstich, H., Beckmann, K., Krebs, D., Hultquist, K., Sussmane, J., Rolfe, P. Journal of perinatal medicine. (1996) [Pubmed]
  11. Evaluation of serum creatine kinase in ectopic pregnancy with reference to tubal status and histopathology. Develioglu, O.H., Askalli, C., Uncu, G., Samli, B., Daragenli, O. BJOG : an international journal of obstetrics and gynaecology. (2002) [Pubmed]
  12. Inactivation of the nuclear receptor coactivator RAP250 in mice results in placental vascular dysfunction. Antonson, P., Schuster, G.U., Wang, L., Rozell, B., Holter, E., Flodby, P., Treuter, E., Holmgren, L., Gustafsson, J.A. Mol. Cell. Biol. (2003) [Pubmed]
  13. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is required for branching morphogenesis in the chorioallantoic placenta. Tanaka, H., Nagaike, K., Takeda, N., Itoh, H., Kohama, K., Fukushima, T., Miyata, S., Uchiyama, S., Uchinokura, S., Shimomura, T., Miyazawa, K., Kitamura, N., Yamada, G., Kataoka, H. Mol. Cell. Biol. (2005) [Pubmed]
  14. Trophoblast cell-specific carcinoembryonic antigen cell adhesion molecule 9 is not required for placental development or a positive outcome of allotypic pregnancies. Finkenzeller, D., Fischer, B., McLaughlin, J., Schrewe, H., Ledermann, B., Zimmermann, W. Mol. Cell. Biol. (2000) [Pubmed]
  15. Cyclin F disruption compromises placental development and affects normal cell cycle execution. Tetzlaff, M.T., Bai, C., Finegold, M., Wilson, J., Harper, J.W., Mahon, K.A., Elledge, S.J. Mol. Cell. Biol. (2004) [Pubmed]
  16. The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation. Afonso, S., Romagnano, L., Babiarz, B. Development (1997) [Pubmed]
  17. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. Hiby, S.E., Walker, J.J., O'shaughnessy, K.M., Redman, C.W., Carrington, M., Trowsdale, J., Moffett, A. J. Exp. Med. (2004) [Pubmed]
  18. Role of uterine natural killer cells and interferon gamma in placental development. Redline, R.W. J. Exp. Med. (2000) [Pubmed]
  19. Cdx2 is essential for axial elongation in mouse development. Chawengsaksophak, K., de Graaff, W., Rossant, J., Deschamps, J., Beck, F. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Peroxisome proliferator-activated receptor gamma controls Muc1 transcription in trophoblasts. Shalom-Barak, T., Nicholas, J.M., Wang, Y., Zhang, X., Ong, E.S., Young, T.H., Gendler, S.J., Evans, R.M., Barak, Y. Mol. Cell. Biol. (2004) [Pubmed]
  21. Expression of syndecan, a putative low affinity fibroblast growth factor receptor, in the early mouse embryo. Sutherland, A.E., Sanderson, R.D., Mayes, M., Seibert, M., Calarco, P.G., Bernfield, M., Damsky, C.H. Development (1991) [Pubmed]
  22. Effects of chorion type on variation in cord blood cholesterol of monozygotic twins. Corey, L.A., Kang, K.W., Christian, J.C., Norton, J.A., Harris, R.E., Nance, W.E. Am. J. Hum. Genet. (1976) [Pubmed]
  23. Hypoxia-inducible factors 1alpha and 2alpha regulate trophoblast differentiation. Cowden Dahl, K.D., Fryer, B.H., Mack, F.A., Compernolle, V., Maltepe, E., Adelman, D.M., Carmeliet, P., Simon, M.C. Mol. Cell. Biol. (2005) [Pubmed]
  24. Distortion of maternal-fetal angiotensin II type 1 receptor allele transmission in pre-eclampsia. Morgan, L., Crawshaw, S., Baker, P.N., Brookfield, J.F., Broughton Pipkin, F., Kalsheker, N. J. Med. Genet. (1998) [Pubmed]
  25. Retinoic acid promotes differentiation of trophoblast stem cells to a giant cell fate. Yan, J., Tanaka, S., Oda, M., Makino, T., Ohgane, J., Shiota, K. Dev. Biol. (2001) [Pubmed]
  26. The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. Qian, X., Esteban, L., Vass, W.C., Upadhyaya, C., Papageorge, A.G., Yienger, K., Ward, J.M., Lowy, D.R., Santos, E. EMBO J. (2000) [Pubmed]
  27. Trophoblast expression of fms-like tyrosine kinase 1 is not required for the establishment of the maternal-fetal interface in the mouse placenta. Hirashima, M., Lu, Y., Byers, L., Rossant, J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  28. Cited1 is required in trophoblasts for placental development and for embryo growth and survival. Rodriguez, T.A., Sparrow, D.B., Scott, A.N., Withington, S.L., Preis, J.I., Michalicek, J., Clements, M., Tsang, T.E., Shioda, T., Beddington, R.S., Dunwoodie, S.L. Mol. Cell. Biol. (2004) [Pubmed]
  29. Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Wang, Z., Shu, W., Lu, M.M., Morrisey, E.E. Mol. Cell. Biol. (2005) [Pubmed]
  30. Relaxin production and release after hysterectomy in the pig. Anderson, L.L., Adair, V., Stromer, M.H., McDonald, W.G. Endocrinology (1983) [Pubmed]
  31. A chemokine, interferon (IFN)-gamma-inducible protein 10 kDa, is stimulated by IFN-tau and recruits immune cells in the ovine endometrium. Nagaoka, K., Sakai, A., Nojima, H., Suda, Y., Yokomizo, Y., Imakawa, K., Sakai, S., Christenson, R.K. Biol. Reprod. (2003) [Pubmed]
  32. Second trimester Doppler ultrasound screening of the uterine arteries differentiates between subsequent normal and poor outcomes of hypertensive pregnancy: two different pathophysiological entities? Aardema, M.W., Saro, M.C., Lander, M., De Wolf, B.T., Oosterhof, H., Aarnoudse, J.G. Clin. Sci. (2004) [Pubmed]
  33. Expression of epidermal growth factor and its receptor in equine placental tissues. Lennard, S.N., Gerstenberg, C., Allen, W.R., Stewart, F. J. Reprod. Fertil. (1998) [Pubmed]
  34. Comparative analysis of HOXC-9 gene expression in murine hemochorial and caprine synepitheliochorial placentae by in situ hybridization. Murasawa, H., Takashima, R., Yamanouchi, K., Tojo, H., Tachi, C. Anat. Rec. (2000) [Pubmed]
WikiGenes - Universities