The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

mu-Protocadherin, a novel developmentally regulated protocadherin with mucin-like domains.

Branching morphogenesis is a central event during the development of kidneys, lungs, and other organs. We previously generated a monoclonal antibody, 3D2-E9, that inhibited branching morphogenesis and caused widespread apoptosis. We now report the purification of its antigen and cloning of its full-length cDNA. Its cDNA encodes an integral membrane protein that contains four cadherin-like ectodomains and a thrice tandemly repeated region enriched in threonine, serine, and proline, similar to those of mucins. We thus term this protein mu-protocadherin, reflecting the hybrid nature of its extracellular region. mu-Protocadherin is expressed in two forms that are developmentally regulated, with the shorter isoform lacking the mucin-like repeats. Expression of the long isoform in heterologous cells results in adhesion of the expressing cells, suggesting that it is a new cell adhesion molecule. mu-Protocadherin contains both N and O glycosylations. It is expressed at lateral and basal surfaces of epithelia during kidney and lung development and is located in coated pits. Colocalization of mu-protocadherin with beta-catenin was noted primarily at the junction of the lateral and basal membrane. The cytoplasmic domain contains four proline-rich regions, similar to SH3 binding regions. Thus, it is likely that adhesive interactions mediated by mu-protocadherin induce signaling events that regulate branching morphogenesis.[1]

References

  1. mu-Protocadherin, a novel developmentally regulated protocadherin with mucin-like domains. Goldberg, M., Peshkovsky, C., Shifteh, A., Al-Awqati, Q. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities