The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Muc2  -  mucin 2, oligomeric mucus/gel-forming

Rattus norvegicus

Synonyms: Intestinal mucin-2, MUC-2, Mucin-2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Muc2


Psychiatry related information on Muc2


High impact information on Muc2

  • After MNNG treatment, class III mucin-positive pyloric glands with a low Pg 1 content in normal-looking pyloric mucosa were found from week 10; subsequently, their number increased with time [7].
  • Histologic examination showed that unlike adenocarcinomas with high mucin-producing activity, which were common in rats on pellet diet, most of the adenocarcinomas that developed in rats fed on defined diet were highly or well differentiated, with a typical glandular pattern [8].
  • All of these sublines contained a large mucin-type sialoglycoprotein (ASGP-1) as a major cell surface component [9].
  • The disappearance of nitrite from buffer was little affected by the addition of pepsin, mucin, albumin, or rat gastric contents [10].
  • Adaptation was not associated with any significant change in basal gastric acid secretion in monkeys and occurred despite a significant decrease in gastric mucin in rats [11].

Chemical compound and disease context of Muc2


Biological context of Muc2


Anatomical context of Muc2

  • The C-terminal domain of rat Muc2 (RMC), a truncated RMC mutant containing the CK, and mutants lacking N9 and N10 sites, were expressed in COS-1 cells and the products monitored by radioactive [(35)S]Met/Cys metabolic pulse-chase and immunoprecipitation [22].
  • The expression of the rat Muc2 in the large intestine was confirmed immunochemically and by Northern blotting [17].
  • This study demonstrated that tumor necrosis factor (TNF)-alpha, a proinflammatory cytokine in mucoid effusion, markedly increased Muc2 mucin mRNA expression in middle ear epithelium, in a time- and dose-dependent manner [23].
  • RESULTS: the Muc2 mucin gene was expressed in middle ear mucosa of the control rats [24].
  • In the Eustachian tube, the Muc2, Muc4 and Muc5 mucin genes were expressed in both control and pneumococcal inoculation groups [24].

Associations of Muc2 with chemical compounds

  • We conclude that under normal conditions the presence of the N9 glycan functions to maintain a folding rate for mucin monomers that is sufficiently slow to allow structural maturation and stability of Muc2 dimers [22].
  • Even after purification, however, the mucin was still vulnerable to partial proteolysis unless it was stored in guanidinium chloride at -20 degrees C. These findings imply that a potent proteinase contaminant remains tightly bound to the mucin through every step of purification, or else that the mucin has autocatalytic properties [25].
  • Previous studies indicate that in addition to an unpaired cysteine, the three intramolecular cystine bonds of the knot are important for stability of the dimers formed by rat intestinal mucin Muc2 [22].
  • N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2 [22].
  • We propose that the presence, on the surface of M cells, of carbohydrates also expressed on Muc2, together with the absence of an enterocyte-associated mucin, could favor pathogen attachment and accessibility to the M-cell luminal membrane [26].

Physical interactions of Muc2


Regulatory relationships of Muc2


Other interactions of Muc2


Analytical, diagnostic and therapeutic context of Muc2


  1. Alterations in Muc2 biosynthesis and secretion during dextran sulfate sodium-induced colitis. Renes, I.B., Boshuizen, J.A., Van Nispen, D.J., Bulsing, N.P., Büller, H.A., Dekker, J., Einerhand, A.W. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) [Pubmed]
  2. Characteristics of rodent intestinal mucin Muc3 and alterations in a mouse model of human cystic fibrosis. Khatri, I.A., Ho, C., Specian, R.D., Forstner, J.F. Am. J. Physiol. Gastrointest. Liver Physiol. (2001) [Pubmed]
  3. Absence of uniform progressive growth of long-term transplants of rat liver neoplastic nodules. Ohmori, T., Watanabe, K., Williams, G.M. J. Natl. Cancer Inst. (1980) [Pubmed]
  4. Mucin histochemistry by paradoxical concanavalin A staining in experimental gastric cancers induced in Wistar rats by N-methyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide. Tatematsu, M., Katsuyama, T., Fukushima, S., Takahashi, M., Shirai, T., Ito, N., Nasu, T. J. Natl. Cancer Inst. (1980) [Pubmed]
  5. Peroxynitrite-induced rat colitis--a new model of colonic inflammation. Rachmilewitz, D., Stamler, J.S., Karmeli, F., Mullins, M.E., Singel, D.J., Loscalzo, J., Xavier, R.J., Podolsky, D.K. Gastroenterology (1993) [Pubmed]
  6. Food deprivation increases apoptotic cell counts induced by 1,2-dimethylhydrazine in rat descending colonic and rectal crypts. Ishizuka, S., Sonoyama, K., Niki, R. J. Nutr. Sci. Vitaminol. (1994) [Pubmed]
  7. Immunohistochemical demonstration of pyloric gland-type cells with low-pepsinogen isozyme 1 in preneoplastic and neoplastic tissues of rat stomachs treated with N-methyl-N'-nitro-N-nitrosoguanidine. Tatematsu, M., Furihata, C., Katsuyama, T., Mera, Y., Inoue, T., Matsushima, T., Ito, N. J. Natl. Cancer Inst. (1987) [Pubmed]
  8. Effect of a chemically defined diet in liquid form on colon carcinogenesis in rats. Tatsuta, M., Yamamura, H., Iishi, H., Ichii, M., Noguchi, S., Baba, M., Taniguchi, H. J. Natl. Cancer Inst. (1985) [Pubmed]
  9. Relationship between xenotransplantability and cell surface properties of ascites sublines of a rat mammary adenocarcinoma. Howard, S.C., Hull, S.R., Huggins, J.W., Carraway, C.A., Carraway, K.L. J. Natl. Cancer Inst. (1982) [Pubmed]
  10. Disappearance of nitrite from the rat stomach: contribution of emptying and other factors. Mirvish, S.S., Patil, K., Ghadirian, P., Kommineni, V.R. J. Natl. Cancer Inst. (1975) [Pubmed]
  11. Increased gastroduodenal concentrations of transforming growth factor alpha in adaptation to aspirin in monkeys and rats. Romano, M., Lesch, C.A., Meise, K.S., Veljaca, M., Sanchez, B., Kraus, E.R., Boland, C.R., Guglietta, A., Coffey, R.J. Gastroenterology (1996) [Pubmed]
  12. Enhancement by propranolol of the inhibitory effect of tetragastrin on gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Tatsuta, M., Iishi, H., Yamamura, H., Taniguchi, H. Cancer Res. (1987) [Pubmed]
  13. Molecular cloning and sequencing of the mucin subunit of a heterodimeric, bifunctional cell surface glycoprotein complex of ascites rat mammary adenocarcinoma cells. Wu, K., Fregien, N., Carraway, K.L. J. Biol. Chem. (1994) [Pubmed]
  14. Platelet-activating factor induces goblet cell hyperplasia and mucin gene expression in airways. Lou, Y.P., Takeyama, K., Grattan, K.M., Lausier, J.A., Ueki, I.F., Agustí, C., Nadel, J.A. Am. J. Respir. Crit. Care Med. (1998) [Pubmed]
  15. Role of the putative "link" glycopeptide of intestinal mucin in binding of piliated Escherichia coli serotype O157:H7 strain CL-49. Sajjan, S.U., Forstner, J.F. Infect. Immun. (1990) [Pubmed]
  16. Tissue norepinephrine depletion as a mechanism for cysteamine inhibition of colon carcinogenesis induced by azoxymethane in Wistar rats. Tatsuta, M., Iishi, H., Baba, M., Taniguchi, H. Int. J. Cancer (1989) [Pubmed]
  17. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. Karlsson, N.G., Herrmann, A., Karlsson, H., Johansson, M.E., Carlstedt, I., Hansson, G.C. J. Biol. Chem. (1997) [Pubmed]
  18. Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. Bell, S.L., Xu, G., Forstner, J.F. Biochem. J. (2001) [Pubmed]
  19. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats. Verburg, M., Renes, I.B., Meijer, H.P., Taminiau, J.A., Büller, H.A., Einerhand, A.W., Dekker, J. Am. J. Physiol. Gastrointest. Liver Physiol. (2000) [Pubmed]
  20. Distinct epithelial responses in experimental colitis: implications for ion uptake and mucosal protection. Renes, I.B., Verburg, M., Van Nispen, D.J., Büller, H.A., Dekker, J., Einerhand, A.W. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) [Pubmed]
  21. Cysteamine and prostaglandin F2 beta stimulate rat gastric mucin release. Lamont, J.T., Ventola, A.S., Maull, E.A., Szabo, S. Gastroenterology (1983) [Pubmed]
  22. N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Bell, S.L., Xu, G., Khatri, I.A., Wang, R., Rahman, S., Forstner, J.F. Biochem. J. (2003) [Pubmed]
  23. Induction of mucin gene expression in middle ear of rats by tumor necrosis factor-alpha: potential cause for mucoid otitis media. Lin, J., Haruta, A., Kawano, H., Ho, S.B., Adams, G.L., Juhn, S.K., Kim, Y. J. Infect. Dis. (2000) [Pubmed]
  24. Pattern changes of mucin gene expression with pneumococcal otitis media. Tsuboi, Y., Kim, Y., Paparella, M.M., Chen, N., Schachern, P.A., Lin, J. Int. J. Pediatr. Otorhinolaryngol. (2001) [Pubmed]
  25. Susceptibility of the cysteine-rich N-terminal and C-terminal ends of rat intestinal mucin muc 2 to proteolytic cleavage. Khatri, I.A., Forstner, G.G., Forstner, J.F. Biochem. J. (1998) [Pubmed]
  26. Glycocalyx on rabbit intestinal M cells displays carbohydrate epitopes from Muc2. Lelouard, H., Reggio, H., Roy, C., Sahuquet, A., Mangeat, P., Montcourrier, P. Infect. Immun. (2001) [Pubmed]
  27. SMAD2 and SMAD7 involvement in the post-translational regulation of Muc4 via the transforming growth factor-beta and interferon-gamma pathways in rat mammary epithelial cells. Soto, P., Price-Schiavi, S.A., Carraway, K.L. J. Biol. Chem. (2003) [Pubmed]
  28. The influence of vasoactive intestinal peptide receptors in dispersed acini from rat submandibular gland on cyclic AMP production and mucin release. Turner, J.T., Camden, J.M. Arch. Oral Biol. (1990) [Pubmed]
  29. Src kinase-dependent epidermal growth factor receptor transactivation in PPARgamma ligand-induced suppression of Porphyromonas gingivalis interference with salivary mucin synthesis. Slomiany, B.L., Slomiany, A. IUBMB Life (2004) [Pubmed]
  30. Up-regulation in endothelin-1 by Helicobacter pylori lipopolysaccharide interferes with gastric mucin synthesis via epidermal growth factor receptor transactivation. Slomiany, B.L., Slomiany, A. Scand. J. Gastroenterol. (2005) [Pubmed]
  31. Disruption in gastric mucin synthesis by Helicobacter pylori lipopolysaccharide involves ERK and p38 mitogen-activated protein kinase participation. Slomiany, B.L., Slomiany, A. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  32. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Shim, J.J., Dabbagh, K., Ueki, I.F., Dao-Pick, T., Burgel, P.R., Takeyama, K., Tam, D.C., Nadel, J.A. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  33. Leptin suppresses Porphyromonas gingivalis lipopolysaccharide interference with salivary mucin synthesis. Slomiany, B.L., Slomiany, A. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  34. The carboxyl-terminal sequence of rat intestinal mucin RMuc3 contains a putative transmembrane region and two EGF-like motifs. Khatri, I.A., Forstner, G.G., Forstner, J.F. Biochim. Biophys. Acta (1997) [Pubmed]
  35. Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration. Verburg, M., Renes, I.B., Van Nispen, D.J., Ferdinandusse, S., Jorritsma, M., Büller, H.A., Einerhand, A.W., Dekker, J. J. Histochem. Cytochem. (2002) [Pubmed]
  36. The cationic C-terminus of rat Muc2 facilitates dimer formation post translationally and is subsequently removed by furin. Xu, G., Bell, S.L., McCool, D., Forstner, J.F. Eur. J. Biochem. (2000) [Pubmed]
  37. Reduction of mucin-1 expression during the receptive phase in the rat uterus. DeSouza, M.M., Mani, S.K., Julian, J., Carson, D.D. Biol. Reprod. (1998) [Pubmed]
  38. Vasoactive intestinal polypeptidergic nerves and Brunner's gland secretion in the rat. Kirkegaard, P., Lundberg, J.M., Poulsen, S.S., Olsen, P.S., Fahrenkrug, J., Hökfelt, T., Christiansen, J. Gastroenterology (1981) [Pubmed]
  39. Effects of streptozotocin-diabetes on rat intestinal mucin and goblet cells. Mantle, M., Thakore, E., Atkins, E., Mathison, R., Davison, J.S. Gastroenterology (1989) [Pubmed]
  40. A neurotensin antagonist, SR 48692, inhibits colonic responses to immobilization stress in rats. Castagliuolo, I., Leeman, S.E., Bartolak-Suki, E., Nikulasson, S., Qiu, B., Carraway, R.E., Pothoulakis, C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
WikiGenes - Universities