Responsiveness of mouse corpora luteal cells to Fas antigen (CD95)-mediated apoptosis.
Regression of the corpus luteum ( CL) occurs by apoptosis. The Fas antigen (Fas) is a cell surface receptor that induces apoptosis in sensitive cells when bound to Fas ligand or agonistic anti-Fas monoclonal antibodies (Fas mAb). A potential role for Fas to induce apoptosis in dispersed CL cell preparations was tested in cells isolated from mice on Days 2-4 of pseudopregnancy. Total CL dispersates, containing steroidogenic luteal cells, fibroblasts, and endothelial cells, were cultured. The effect of pretreatment of cultures with cytokines interferon gamma (IFN) and tumor necrosis factor alpha (TNF) was examined because these cytokines demonstrated effects on Fas-mediated apoptosis in other cell types. Fas mAb had no effect on viability of CL cells cultured in 5% fetal bovine serum (FBS) and pretreated with or without IFN or TNF, but Fas mAb did kill 23% of the cells in cultures pretreated with IFN + TNF. Fas mRNA was detectable in cultured CL cells and was increased 2.1-, 2. 0-, and 11.8-fold by treatment with TNF, IFN, or IFN + TNF, respectively. CL cells treated with the protein synthesis inhibitor cycloheximide (CX) were killed by Fas mAb in the absence of cytokine pretreatment (34%); pretreatment with IFN or IFN + TNF further potentiated killing (62% and 96%, respectively), whereas pretreatment with TNF had no effect (42%). Cells cultured in medium supplemented with insulin, transferrin, and selenium instead of FBS were killed by Fas mAb in the presence of IFN (23%) or IFN + TNF (29%) but not in the presence of TNF. Cells derived from the mouse CL have a functional Fas pathway that is inhibited by FBS and activated by treatment with CX, IFN, and IFN + TNF.[1]References
- Responsiveness of mouse corpora luteal cells to Fas antigen (CD95)-mediated apoptosis. Quirk, S.M., Harman, R.M., Huber, S.C., Cowan, R.G. Biol. Reprod. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg