The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pseudopregnancy

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pseudopregnancy

  • Ovarian function was monitored by estimation of serum 17-beta-estradiol (E2) and progesterone (P) levels during (i) different stages of body maturation as indexed by body weight, and (ii) various stages of the estrous and pseudopregnancy (PSP) cycles [1].
  • VCS, provided manually, mimics many aspects of mating, including facilitation of lordosis, induction of sexual receptivity, abbreviation of the period of sexual receptivity, and induction of twice-daily prolactin surges, which result in pseudopregnancy [2].
  • Two measures of growth, actual weight gain and bone dimension, were significantly improved by the physiological processes of pregnancy and pseudopregnancy, by extra-sellar graft of a normal mouse pituitary, and by treatment with GH but not prolactin [3].
  • These observations and the analysis of data already published suggest that the amenorrhea of pseudocyesis is associated neither with a persistent corpus luteum nor chronic hyperprolactinemia [4].
  • High progesterone concentrations in a third dolphin that did not give birth indicated a possible pseudopregnancy or fetal resorption [5].
 

Psychiatry related information on Pseudopregnancy

 

High impact information on Pseudopregnancy

  • 2) The urinary excretion of cGMP also increases during pregnancy and pseudopregnancy, paralleling the rise in urinary nitrate excretion [7].
  • Clock mutants also show an unexpected decline in progesterone levels at midpregnancy and a shortened duration of pseudopregnancy, suggesting that maternal prolactin release may be abnormal [8].
  • Estrogen treatment, by way of estradiol-17 beta implant, increased levels of the lipid-stimulated phosphoprotein 2-3-fold throughout pseudopregnancy [9].
  • Estrogen modulates Ca(2+)-independent lipid-stimulated kinase in the rabbit corpus luteum of pseudopregnancy. Identification of luteal estrogen-modulated lipid-stimulated kinase as protein kinase C delta [9].
  • In contrast, mating with vasectomized males resulted in an inflammatory response on D1 of pseudopregnancy similar to that on D1 of normal pregnancy, whereas mechanical stimulation of the uterine cervix failed to elicit such a response [10].
 

Chemical compound and disease context of Pseudopregnancy

 

Biological context of Pseudopregnancy

 

Anatomical context of Pseudopregnancy

 

Associations of Pseudopregnancy with chemical compounds

 

Gene context of Pseudopregnancy

  • During pseudopregnancy, the Ihh mRNA level was transiently increased in the preimplantation period and d 3 and d 4 post coitum and then decreased rapidly at d 5 post coitum [26].
  • Total RNA obtained from rat decidual tissue on different days of pseudopregnancy was analyzed by RT-PCR using specific primers for IL-6, IL-6R, and 130-kDa glycoprotein (gp130) [27].
  • Isg15 mRNA was detected in the mouse uterus and increased after d 4.5 of pregnancy but did not change between d 3.5 and 9.5 of pseudopregnancy [28].
  • Kallikrein content rose from Day 1 of pseudopregnancy (PP1) to a maximum on PP7 (0.18 +/- 0.01 to 0.39 +/- 0.04 ng/mg protein; n = 36; p < 0.001) [29].
  • In contrast, estrogen injection resulted in moderate but uniform SPP1 mRNA in all LE of Day 15 nonpregnant gilts, with expression maintained through Day 90 of pseudopregnancy [30].
 

Analytical, diagnostic and therapeutic context of Pseudopregnancy

References

  1. Ovarian blood flow in the rat: association with body weight, the estrous cycle, and pseudopregnancy. Garris, D.R., Curry, T.E. Proc. Soc. Exp. Biol. Med. (1983) [Pubmed]
  2. A dopamine antagonist blocks vaginocervical stimulation-induced neuronal responses in the rat forebrain. Quysner, A., Blaustein, J.D. Brain Res. (2001) [Pubmed]
  3. Stimulation of growth in the little mouse. Beamer, W.H., Eicher, E.M. J. Endocrinol. (1976) [Pubmed]
  4. Pituitary function in human pseudocyesis. Forsbach, G., Güitron, A., Munoz, M., Bustos, H. J. Endocrinol. Invest. (1987) [Pubmed]
  5. Concentrations of progesterone in milk from bottlenose dolphins during different reproductive states. West, K.L., Atkinson, S., Carmichael, M.J., Sweeney, J.C., Krames, B., Krames, J. Gen. Comp. Endocrinol. (2000) [Pubmed]
  6. Uteroglobin in the rabbit. II. Intracellular localization in the uterus after hormone treatment. Kirchner, C. Cell Tissue Res. (1976) [Pubmed]
  7. Identification of increased nitric oxide biosynthesis during pregnancy in rats. Conrad, K.P., Joffe, G.M., Kruszyna, H., Kruszyna, R., Rochelle, L.G., Smith, R.P., Chavez, J.E., Mosher, M.D. FASEB J. (1993) [Pubmed]
  8. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Miller, B.H., Olson, S.L., Turek, F.W., Levine, J.E., Horton, T.H., Takahashi, J.S. Curr. Biol. (2004) [Pubmed]
  9. Estrogen modulates Ca(2+)-independent lipid-stimulated kinase in the rabbit corpus luteum of pseudopregnancy. Identification of luteal estrogen-modulated lipid-stimulated kinase as protein kinase C delta. Maizels, E.T., Miller, J.B., Cutler, R.E., Jackiw, V., Carney, E.M., Mizuno, K., Ohno, S., Hunzicker-Dunn, M. J. Biol. Chem. (1992) [Pubmed]
  10. Activation and distribution of inflammatory cells in the mouse uterus during the preimplantation period. McMaster, M.T., Newton, R.C., Dey, S.K., Andrews, G.K. J. Immunol. (1992) [Pubmed]
  11. Regulation of lipid peroxidation by nitric oxide and PGF2alpha during luteal regression in rats. Motta, A.B., Estevez, A., Franchi, A., Perez-Martinez, S., Farina, M., Ribeiro, M.L., Lasserre, A., Gimeno, M.F. Reproduction (2001) [Pubmed]
  12. Immunization with zona pellucida proteins results in abnormal ovarian follicular differentiation and inhibition of gonadotropin-induced steroid secretion. Skinner, S.M., Mills, T., Kirchick, H.J., Dunbar, B.S. Endocrinology (1984) [Pubmed]
  13. In vivo generation of hydrogen peroxide in the rat corpus luteum during luteolysis. Riley, J.C., Behrman, H.R. Endocrinology (1991) [Pubmed]
  14. Uterine oxytocin gene expression. I. Induction during pseudopregnancy and the estrous cycle. Lefebvre, D.L., Farookhi, R., Larcher, A., Neculcea, J., Zingg, H.H. Endocrinology (1994) [Pubmed]
  15. Temporal aspects of the involvement of the uterus and prolactin in the establishment of luteinizing hormones-dependent progesterone secretion in the rat. Garris, D.R., Rothchild, I. Endocrinology (1980) [Pubmed]
  16. Estrogen receptor in deciduoma cells separated by velocity sedimentation. Moulton, B.C., Koenig, B.B. Endocrinology (1981) [Pubmed]
  17. 'Distinct cellular localization' of the messenger ribonucleic acid for prostaglandin E receptor subtypes in the mouse uterus during pseudopregnancy. Katsuyama, M., Sugimoto, Y., Morimoto, K., Hasumoto, K., Fukumoto, M., Negishi, M., Ichikawa, A. Endocrinology (1997) [Pubmed]
  18. Progesterone and implanting blastocysts regulate Muc1 expression in rabbit uterine epithelium. Hoffman, L.H., Olson, G.E., Carson, D.D., Chilton, B.S. Endocrinology (1998) [Pubmed]
  19. Prolactin inhibits annexin 5 expression and apoptosis in the corpus luteum of pseudopregnant rats: involvement of local gonadotropin-releasing hormone. Kawaminami, M., Shibata, Y., Yaji, A., Kurusu, S., Hashimoto, I. Endocrinology (2003) [Pubmed]
  20. Progesterone inhibits superoxide radical production by mononuclear phagocytes in pseudopregnant rats. Sugino, N., Shimamura, K., Tamura, H., Ono, M., Nakamura, Y., Ogino, K., Kato, H. Endocrinology (1996) [Pubmed]
  21. Alterations in phospholipase A2 activity during luteal regression in pseudopregnant and pregnant rats. Wu, X.M., Carlson, J.C. Endocrinology (1990) [Pubmed]
  22. Uterine steroid receptor changes associated with progesterone withdrawal during pregnancy and pseudopregnancy in rabbits. Quirk, S.M., Currie, W.B. Endocrinology (1984) [Pubmed]
  23. The effects of transient dopamine antagonism on thyrotropin-releasing hormone-induced prolactin release in pseudopregnant rats. Haisenleder, D.J., Moy, J.A., Gala, R.R., Lawson, D.M. Endocrinology (1986) [Pubmed]
  24. Effect of prolactin on luteal functions in the cyclic rat: positive correlation between luteinizing hormone-stimulated adenylyl cyclase activity and progesterone secretion; role in corpus luteum rescue of the morning surge of prolactin on day 3 of pseudopregnancy. Day, S.L., Kirchick, H.J., Birnbaumer, L. Endocrinology (1980) [Pubmed]
  25. Reduced level of uterine norepinephrine transmitter during hCG-induced pseudopregnancy in the rabbit. Alm, P., Falck, B., Owman, C.H., Sjöberg, N.O., Thorbert, G. Endocrinology (1975) [Pubmed]
  26. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Takamoto, N., Zhao, B., Tsai, S.Y., DeMayo, F.J. Mol. Endocrinol. (2002) [Pubmed]
  27. The expression of interleukin-6 (IL-6), IL-6 receptor, and gp130-kilodalton glycoprotein in the rat decidua and a decidual cell line: regulation by 17beta-estradiol and prolactin. Deb, S., Tessier, C., Prigent-Tessier, A., Barkai, U., Ferguson-Gottschall, S., Srivastava, R.K., Faliszek, J., Gibori, G. Endocrinology (1999) [Pubmed]
  28. Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Austin, K.J., Bany, B.M., Belden, E.L., Rempel, L.A., Cross, J.C., Hansen, T.R. Endocrinology (2003) [Pubmed]
  29. Estrogen and luminal stimulation of rat uterine kallikrein. Corthorn, J., Figueroa, C., Valdés, G. Biol. Reprod. (1997) [Pubmed]
  30. Steroid regulation of cell specific secreted phosphoprotein 1 (osteopontin) expression in the pregnant porcine uterus. White, F.J., Ross, J.W., Joyce, M.M., Geisert, R.D., Burghardt, R.C., Johnson, G.A. Biol. Reprod. (2005) [Pubmed]
  31. Changes in the gene expression of a protein with the cdc10/SWI6 motif, V-1, during rat follicular development and corpus luteum formation. Song, S.Y., Asakai, R., Kenmotsu, N., Taoka, M., Isobe, T., Yamakuni, T. Endocrinology (1996) [Pubmed]
  32. Estrogen receptors alpha and beta in rat decidua cells: cell-specific expression and differential regulation by steroid hormones and prolactin. Tessier, C., Deb, S., Prigent-Tessier, A., Ferguson-Gottschall, S., Gibori, G.B., Shiu, R.P., Gibori, G. Endocrinology (2000) [Pubmed]
  33. Distribution of transforming growth factor alpha precursors in the mouse uterus during the periimplantation period and after steroid hormone treatments. Paria, B.C., Das, S.K., Huet-Hudson, Y.M., Dey, S.K. Biol. Reprod. (1994) [Pubmed]
  34. Evidence for multiple uterine modulators of rabbit luteal function: the effect of hysterectomy during pseudopregnancy in the estrogen-treated rabbit. Miller, J.B., McLean, M.P. Biol. Reprod. (1987) [Pubmed]
 
WikiGenes - Universities