The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla.

The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the posttranslational conversion of glutamic acid to gamma-carboxyglutamic acid, an amino acid critical to the function of the vitamin K-dependent blood coagulation proteins. Given the functional similarity of mammalian vitamin K-dependent carboxylases and the vitamin K-dependent carboxylase from Conus textile, a marine invertebrate, we hypothesized that structurally conserved regions would identify sequences critical to this common functionality. Furthermore, we examined the diversity of animal species that maintain vitamin K-dependent carboxylation to generate gamma-carboxyglutamic acid. We have cloned carboxylase homologs in full-length or partial form from the beluga whale (Delphinapterus leucas), toadfish (Opsanus tau), chicken (Gallus gallus), hagfish (Myxine glutinosa), horseshoe crab (Limulus polyphemus), and cone snail (Conus textile) to compare these structures to the known bovine, human, rat, and mouse cDNA sequences. Comparison of the predicted amino acid sequences identified a nearly perfectly conserved 38-amino acid residue region in all of these putative carboxylases. In addition, this amino acid motif is also present in the Drosophila genome and identified a Drosophila homolog of the gamma-carboxylase. Assay of hagfish liver demonstrated vitamin K-dependent carboxylase activity in this hemichordate. These results demonstrate the broad distribution of the vitamin K-dependent carboxylase gene, including a highly conserved motif that is likely critical for enzyme function. The vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid appears to be a highly conserved function in the animal kingdom.[1]


  1. A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla. Begley, G.S., Furie, B.C., Czerwiec, E., Taylor, K.L., Furie, G.L., Bronstein, L., Stenflo, J., Furie, B. J. Biol. Chem. (2000) [Pubmed]
WikiGenes - Universities