The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Deoxyribonucleic acid-cytosine methylation by host- and plasmid-controlled enzymes.

Deoxyribonucleic acid (DNA)-cytosine methylation specified by the wild-type Escherichia coli K 12 mec+ gene and by the N-3 drug resistance (R) factor was studied in vivo and in vitro. Phage lambda and fd were propagated in the presence of L-[methyl-3H]methionine in various host bacteria. The in vivo labeled DNA was isolated from purified phage and depurinated by formic acid-diphenylamine treatment. The resulting pyrimidine oligonucleotide tracts were separated according to size and base composition by chromatography on diethylaminoethyl-cellulose in 7 M urea at pH 5.5 and 3.5, respectively. The distribution of labeled 5-methylcytosine in DNA pyrimidine tracts was identical for phage grown in mec+ and mec minus (N-3) cells. For phage lambda the major 5-methylcytosine containing tract was the tripyrimidine, C2T; for both fd-mec minus (N-3) DNA and fd-mec+DNA, C2T was the sole 5-methylcytosine-containing tract. When various lambda DNAs were methylated to saturation in vitro by crude extracts from mec+ and mec minus (N-3) cells, the extent of cytosine methylation was the same. This is in contrast to in vivo methylation where lambda-mec minus (N-3) DNA contains twice as many 5-methylcytosines per genome as lambda-mec+ DNA. Therefore, we suggest that the K12 met+ cytosine methylase and the N-3 plasmid modification methylase are capable of recognizing the same nucleotide sequences, but that the in vivo methylation rate is lower in mec+ cells.[1]

References

 
WikiGenes - Universities