The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

rpsG  -  30S ribosomal subunit protein S7

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3328, JW3303
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of rpsG

  • A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium [1].
  • Although the two phage proteins differ in their chromatographic and antigenic properties, they act by the same mechanism: the anti-restriction proteins inhibit E. coli K12 restriction endonuclease by direct interaction [2].
  • These findings support the previous conclusions, based on infectivity assays in mice, that propagation of polyoma virus DNA as a component of recombinant DNA molecules in E. coli K12 reduces its biologic activity many orders of magnitude relative to the virus itself [3].
  • Dead intimin beta+ C. rodentium, intimin alpha-transfected C. rodentium or E. coli strain K12, and EPEC induced mucosal hyperplasia identical to that caused by C. rodentium live infection, as well as a massive T helper cell-type 1 immune response in the colonic mucosa [4].
  • Structural homologies among different restriction systems of Escherichia coli and several Salmonella species have been investigated by immunological methods using antibodies prepared against two subunits of the E. coli K12 restriction enzyme, and by DNA hybridization experiments using different fragments of the E. coli K12 hsd genes as probes [5].
 

High impact information on rpsG

 

Chemical compound and disease context of rpsG

 

Biological context of rpsG

 

Anatomical context of rpsG

  • Integration into the cytoplasmic membrane and function of the three F0 subunits, a, b and c, of the membrane-bound ATP synthase of Escherichia coli K12 were analysed in situations where synthesis of only one or two types of subunits was possible [20].
  • The anti-acpP PNA at 2 microM concentration cured HeLa cell cultures noninvasively infected with E. coli K12 without any apparent toxicity to the human cells [21].
  • E. coli K-12 strain KY895 cells transformed by pMH1A did not show enhanced incorporation of [3H]dThd into bacterial DNA, although pMH1A DNA isolated from transformed KY895 cells, like pAGO DNA, did transform TK- mouse fibroblast [LM(TK-)] cells to the TK+ phenotype [22].
  • We have used nylon membranes spotted in duplicate with full-length polymerase chain reaction-generated products of each of the 4,290 predicted Escherichia coli K12 open reading frames (ORFs) to measure the gene expression profiles in otherwise isogenic integration host factor IHF(+) and IHF(-) strains [23].
  • Cloned diphtheria toxin fragment A is expressed from the tox promoter and exported to the periplasm by the SecA apparatus of Escherichia coli K12 [24].
 

Associations of rpsG with chemical compounds

  • RF2 from E.coli K12 is unique in having Thr246 near the GGQ motif, where all other sequenced bacterial class 1 RFs have alanine or serine [25].
  • The activity of unmethylated RF2 from K12 strains is extremely low due to the cumulative effects of threonine at position 246, in place of alanine or serine present in all other bacterial RFs, and the lack of N(5)-methylation of Gln252 [26].
  • We propose that the previously observed lethal effect of overproducing E.coli K12 RF2 arises through accumulating the defects due to lack of Gln252 methylation and Thr246 in place of alanine [25].
  • In environments that cycle between high and low arginine, short seasons favor the K12 allele, whereas long seasons favor the B allele [27].
  • Bacteriol. 117, 1093-1098) and strain K12 CS (Barash, H., and Halpern, Y.S. (1971) Biochem. Biophys. Res. Commun. 45, 681-688) [28].
 

Other interactions of rpsG

 

Analytical, diagnostic and therapeutic context of rpsG

References

  1. Comparison of the complete sequence of the str operon in Salmonella typhimurium and Escherichia coli. Johanson, U., Hughes, D. Gene (1992) [Pubmed]
  2. A novel bacteriophage defence mechanism: the anti-restriction protein. Spoerel, N., Herrlich, P., Bickle, T.A. Nature (1979) [Pubmed]
  3. Molecular cloning of polyoma virus DNA in Escherichia coli: oncogenicity testing in hamsters. Israel, M.A., Chan, H.W., Martin, M.A., Rowe, W.P. Science (1979) [Pubmed]
  4. Role of bacterial intimin in colonic hyperplasia and inflammation. Higgins, L.M., Frankel, G., Connerton, I., Gonçalves, N.S., Dougan, G., MacDonald, T.T. Science (1999) [Pubmed]
  5. Structural homologies among type I restriction-modification systems. Murray, N.E., Gough, J.A., Suri, B., Bickle, T.A. EMBO J. (1982) [Pubmed]
  6. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Burton, Z.F., Gross, C.A., Watanabe, K.K., Burgess, R.R. Cell (1983) [Pubmed]
  7. The structures and fidelity of replication of mouse mitochondrial DNA-pSC 101 EcoRI recombinant plasmids grown in E. coli K12. Brown, W.M., Watson, R.M., Vinograd, J., Tait, K.M., Boyer, H.W., Goodman, H.M. Cell (1976) [Pubmed]
  8. Introns in the chicken ovalbumin gene prevent ovalbumin synthesis in E. coli K12. Mercereau-Puijalon, O., Kourilsky, P. Nature (1979) [Pubmed]
  9. Cloning of replication origins from the E. coli K12 chromosome. Diaz, R., Pritchard, R.H. Nature (1978) [Pubmed]
  10. Distribution of inverted IS-length sequences in the E. coli K12 genome. Deonier, R.C., Hadley, R.C. Nature (1976) [Pubmed]
  11. Isolation and characterization of mutants of Escherichia coli K12 resistant to the new aminoglycoside antibiotic, amikacin. Hull, R., Klinger, J.D., Moody, E.E. J. Gen. Microbiol. (1976) [Pubmed]
  12. Degradation of DNA by nucleases in intestinal tract of rats. Maturin, L., Curtiss, R. Science (1977) [Pubmed]
  13. Infection caused by Proteus mirabilis strains with transferrable gentamicin-resistance factors. Datta, N. Lancet (1975) [Pubmed]
  14. Promotion of RNA transcription on the insertion element IS30 of E. coli K12. Dalrymple, B., Arber, W. EMBO J. (1985) [Pubmed]
  15. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80. Chen, M.X., Bouquin, N., Norris, V., Casarégola, S., Séror, S.J., Holland, I.B. EMBO J. (1991) [Pubmed]
  16. The complete genome sequence of Escherichia coli K-12. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., Shao, Y. Science (1997) [Pubmed]
  17. Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Riley, M., Abe, T., Arnaud, M.B., Berlyn, M.K., Blattner, F.R., Chaudhuri, R.R., Glasner, J.D., Horiuchi, T., Keseler, I.M., Kosuge, T., Mori, H., Perna, N.T., Plunkett, G., Rudd, K.E., Serres, M.H., Thomas, G.H., Thomson, N.R., Wishart, D., Wanner, B.L. Nucleic Acids Res. (2006) [Pubmed]
  18. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. Enne, V.I., Bennett, P.M., Livermore, D.M., Hall, L.M. J. Antimicrob. Chemother. (2004) [Pubmed]
  19. Nucleotide sequence of the prokaryotic mobile genetic element IS30. Dalrymple, B., Caspers, P., Arber, W. EMBO J. (1984) [Pubmed]
  20. Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. Friedl, P., Hoppe, J., Gunsalus, R.P., Michelsen, O., von Meyenburg, K., Schairer, H.U. EMBO J. (1983) [Pubmed]
  21. Bactericidal antisense effects of peptide-PNA conjugates. Good, L., Awasthi, S.K., Dryselius, R., Larsson, O., Nielsen, P.E. Nat. Biotechnol. (2001) [Pubmed]
  22. Herpes simplex virus thymidine kinase activity of thymidine kinase-deficient Escherichia coli K-12 mutant transformed by hybrid plasmids. Kit, S., Otsuka, H., Qavi, H., Hazen, M. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  23. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. Arfin, S.M., Long, A.D., Ito, E.T., Tolleri, L., Riehle, M.M., Paegle, E.S., Hatfield, G.W. J. Biol. Chem. (2000) [Pubmed]
  24. Cloned diphtheria toxin fragment A is expressed from the tox promoter and exported to the periplasm by the SecA apparatus of Escherichia coli K12. Leong, D., Coleman, K.D., Murphy, J.R. J. Biol. Chem. (1983) [Pubmed]
  25. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. Dinçbas-Renqvist, V., Engström, A., Mora, L., Heurgué-Hamard, V., Buckingham, R., Ehrenberg, M. EMBO J. (2000) [Pubmed]
  26. The hemK gene in Escherichia coli encodes the N(5)-glutamine methyltransferase that modifies peptide release factors. Heurgué-Hamard, V., Champ, S., Engström, A., Ehrenberg, M., Buckingham, R.H. EMBO J. (2002) [Pubmed]
  27. Fitness consequences of a regulatory polymorphism in a seasonal environment. Suiter, A.M., Bänziger, O., Dean, A.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  28. Purification and properties of a periplasmic glutamate-aspartate binding protein from Escherichia coli K12 strain W3092. Willis, R.C., Furlong, C.E. J. Biol. Chem. (1975) [Pubmed]
  29. Suppressors of temperature-sensitive mutations in a ribosomal protein gene, rpsL (S12), of Escherichia coli K12. Nashimoto, H., Miura, A., Saito, H., Uchida, H. Mol. Gen. Genet. (1985) [Pubmed]
  30. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. Long, A.D., Mangalam, H.J., Chan, B.Y., Tolleri, L., Hatfield, G.W., Baldi, P. J. Biol. Chem. (2001) [Pubmed]
  31. Purification of the colicin I receptor. Bowles, L.K., Miguel, A.G., Konisky, J. J. Biol. Chem. (1983) [Pubmed]
  32. Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. Brooke, J.S., Valvano, M.A. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities